
Lua Plug-ins for VRInsight devices

Using VRInsight's SerialFP2 and FSUIPC together with re-programming using plug-ins.

Introduction

This document follows on from the Appendix in your FSUIPC Advanced Users Guide entitled "Handling VRInsight

devices in FSUIPC". If you have not read and acted upon that first, please do so before moving on to the facilities

detailed here.

This is not going to teach you how to completely program VRInsight devices in Lua, using the "com" library facilities.

You most certainly could do that if you so wished, but it is beyond the scope of this package.

What this will do is show how some parts of what the devices do can be changed a little to more suit your needs. To do

this we shall concentrate on two examples (both of which are useful now, but both of which have apparently been

promised as future SerialFP2 improvements by VRInsight):

VRI_SetMach: a plug-in to provide Mach speed control setting and readout from the MCP Combi device. This one is

well-tested on my own MCP Combi.

VRI_SetBaro: a plug-in to provide the option to show and adjust the altitmeter BARO setting on the M-Panel device

in millibars (hectoPascals) as an alternative to inches of mercury. At the time of publication this has not been tested at

all on the device (so look out for updates).

However, before the examples, some reference information about parameter setups in FSUIPC's INI file.

FSUIPC INI file settings

If you've already set up your system for using FSUIPC with VRInsight devices, as you should have, you will have a

[VRInsight] section in your INI file already. This will be something like this:

[VRInsight]

1=COM5,COM2

where COM5 is your VRInsight device connection, and COM2 is one of a pair of Virtual Ports. You COM numbers

will be different, of course, and if you have multiple VRI devices there will no doubt be more entries in this section,

one parameter line for each device.

To extend this facility to use Lua plug-ins easily and automatically you add a new section to the INI file for each

device you want so handled. This is the general format for this section:

[VRInsight.<devicetype>]

Lua=<name of plugin>

DriverReads=<option>

DriverWrites=<option>

where the last two are optional, and the parts in < > are:

<devicetype> is one of these (the current known VRInsight device names as shown in SerialFP2):

 FMER MCP Combi

 CDU CDU panel

 CDU2 CDU II panel

 COM Instrument Radio Stack

 FltMn Unknown future device

 JetPt Jet Pit

 MFD Unknown future device

 MPanl M Panel

 ProPt Prop Pit

 uJPit Micro Jet Pit

 uPPit Micro Prop Pit

<name of plugin> gives the name of the Lua plug-in to be automatically loaded if this device is detected (and

for each such detection). Omit the '.lua' part.

<option> is one of these:

 NO to block data to ("reads") or from ("writes") the SerialFP2 driver from / to the device. Note that the

Lua plug-in can read from and write to the device in any case. This option merely cuts off the

SerialFP2 driver from all data ariving ("reads") or, more likely ("writes") stops it writing anything

to the device.

 YES to allow the driver reads or writes through to the device as normal. The plug-in can still read and

write both This is the default setting if the parameter line is omitted.

 FILTER will be found to be the most useful. It allows you to make a list of those commands and responses

which should not be allowed to go between the driver and the device.

It is the FILTER facility which allows your plug-in to take control of some aspects of the device actions without

interfering with it all. If you set this option then you add a list of filters afterwards. These are in this form:

 WrFilter.n=<filter string>

for Write filters (that is, writes TO the device FROM SerialFP2, the driver, and

 RdFilter.n=<filter string>

for Read filters (that is, reads FROM the device TO SerialFP2, the driver.

As already mentioned, but worth emphasising, the filters act between driver and device. The device reads are all

accessible to the Lua plug-in, as are the driver writes.

The number, 'n', starts at 1 for each of the groups (Rd and Wr) and increases normally, just being a listing reference.

You can have a maximum of 32 filters of each of the two types.

The strings listed in the filters represent those being sent back and forth between SerialFP2 and the device. The best

way for you to know what they are and understand what they do is to use the FSUIPC Log facility (the Debug=Please,

LogExtras=4 options detailed in the FSUIPC Advanced User's appendix). The log will show the exact command and

response strings being used.

However, there are some special facilities in the filter string specifications:

The character * at the end means "any characters at all, or none".

The character ? at the end means "any number of decimal digits, only, until the end"

The characters ?+ at the end means "any number of decimal digits, only, until the end or a + or -

Other special filtering options may be added if the need arises. Those are the few found to be needed for the examples

we shall look at. in detail below.

The Lua plug-in

The Lua program which is automatically loaded via the parameters in the INI file VRI device sections has to interact

with at least the device and quite possibly also the SerialFP2 driver. It does this using the com library functions

provided by FSUIPC.

Since you may have more than one VRI device of the same type, the actual COM ports being used should not be built

into the Lua program. Instead, it is supplied with three pieces of information, as pre-defined Lua string variables:

 VRImodel the short model device name as in the list above (FMER etc)

 VRIdevice the string name of the COM port to which the device is attached

 VRIdriver the string name of the virtual port which the SerialFP2 driver is ultimately connected to.

These will always be set if the plugin is started automatically via the FSUIPC INI settings we discussed, but will be

"nil" if the user starts the plug-in in any other way. You can use this fact whilst testing before having it automatically

loaded and run—the difficulty of allowing the latter before your Lua programming is fully working is that it then needs

an FS restart to get it running again after you encounter a problem. By making it work in a free-standing way too you

can do all the testing and debugging in one FS session.

This precautionary way of programming is demonstrated in the first example which will now be fully explained.

VRI_SetMach: An example for the MCP Combi Device

This describes in detail the VRI_SetMach.lua plug-in included with the Lua package and acts as a useful example of the mixing of

SerialFP2 and FSUIPC handling.

If you have an MCP Combi device you can try this example now. The extra section you need in your FSUIPC INI file looks like

this:

[VRInsight.FMER]

Lua=VRI_SetMach

DriverWrites=Filter

WrFilter.1=SPD?

WrFilter.2=SPDOF

WrFilter.3=SPDON

DriverReads=Filter

RdFilter.1=SPD?+

The driver commands we are stopping are all those concerned with displaying the Speed (SPDnnn) and turning the "*" on and off

showing the speed mode enabled or not (SPDON and SPDOF). These are filtered off because we handle them in the plug-in.

The device sending SPDnnn+ or SPNnnn-, or the fast versions SPDnnn++ and SPDnnn-- are stopped from going to the driver,

because they always set the IAS and we want to be able to set the Mach instead.

You will see these commands and responses going back and forth in the FSUIPC log, if you've enabled the special VRI logging.

This is how you find out what to intercept and how to do it yourself. However, I am also attempting to put together a complete

listing of SerialFP2 output commands for each device. That will follow in due course.

The VRI_SetMach.lua code can now be examined, step by step:

if VRImodel == nil then

 -- Set known ports if testing with Lua not loaded automatically

 VRIdriver = "COM2"

 VRIdevice = "COM5"

end

All this part is doing is allowing me to run the plug-in separately, without the automatic loading in FSUIPC INI. I assigned one

keypress to "Lua VRI_SetMach" and another to "LuaKill VRI_SetMach" so I could run tests and keep changing it till it worked

properly (yes, things don't always work properly first time!).

When the plug-in is loaded automatically the values of VRImodel, VRIdriver and VRIdevice will already be set correctly for the

program.

speed = 115200 -- is this the same for all VRI devices? (YES!)

handshake = 0 -- No handshake

minsize = 8

maxsize = 8 -- VRI seems to use fixed length blocks of 8 bytes

These are standard settings for VRI devices. You can't really change the first two in any case when we are opening ports already

opened by FSUIPC, but it is best to have the correct values in the calls we make

dev = com.open(VRIdevice, speed, handshake)

In this case we only need to talk to the device. We have no need to hear what the driver says or to send anything to it, so we don't

open the VRIdriver port.

Skip now to the end:

setmchmode(0x7e4, ipc.readUD(0x7e4))

setspdmode(0x7dc, ipc.readUD(0x7dc))

event.offset(0x7e2, "UW", "setspeed")

event.offset(0x7e8, "UD", "setmach")

event.offset(0x7e4, "UD", "setmchmode")

event.offset(0x7dc, "UD", "setspdmode")

event.VRIread(dev, "setmachtofs")

Here's where you will need the list of FSUIPC offsets, the references to internal FS values will usually need those. You'll need to

download the FSUIPC SDK. For FS2004 and before the best reference for offsets is the list in the "FSUIPC for Programmers"

document—bypass the chatty stuff at the start and go straight to the tabulated list. You can use search to find things in there. For

FSX and ESP you should use the FSUIPC4 Offsets Status document, also in the SDK.

Back to the code. The first two lines in the extract above are merely testing the current IAS/Mach state and setting things up

accordingly. The functions they call are those which are also called when those offsets change -- 07E4 is the A/P Mach mode

switch and 07DC is the A/P speed mode switch.

The sequence of event.offset function calls ensure that one of our routines is called on a change of A/P mode and when either the

speed value (in offset 07E2) or the Mach value (in offset 07E8) change. Those routines in turn take care of updating the display, as

here, from the "setmach" function:

val = (val / 655.36) + 0.5 -- rounded

str = string.format("SPD%03d", val)

com.write(dev, str, 8)

Note the conversion from FS units (65536 times the Mach value) to 100ths, then formatting the result into the command "SPDnnn"

which displays the value. This makes Mach 0.82 show as 082. (There's no way to get a decimal point).

The really new entry in this part of the program, though, is that "event.VRIread". This calls the function "setmachtofs" every time

anything arrives in FSUIPC from the device, whether it is going to be filtered or not. So that function must check whether it is one

we should handle:

-- need to check only for SPDnnn+/- and send speed or mach to FS

speed = tonumber(string.match(str, "SPD(%d%d%d)"))

if speed ~= nil then

This is using one of those really clever little Lua string library functions to not only match "SPDnnn ..." responses, ignoring the +

or - characters on the end, but also extract the value of the 3 digit numerical part. Then it can update the speed or mach value offset

as appropriate for the current mode.

Okay. I think that's all that really needs explaining here. Have a look though it, try it. Note that there's extra debugging lines still

left in, those "ipc.log" function calls to log whatever is happening. For streamlining those should be removed now, but I left them

in for your use.

VRI_SetBaro: An example for the M Panel Device

This describes in outline only the VRI_SetBaro.lua plug-in included with the Lua package. If you have an M Panel device you can

try this example now. The extra section you need in your FSUIPC INI file looks like this:

[VRInsight.MPanl]

Lua=VRI_SetBaro

DriverWrites=Filter

WrFilter.1=BAR?

DriverReads=Filter

RdFilter.1=BAR?+

If you got through the last example this one should be easy for you. As it says in the comment in the code, it uses the local Lua flag

0 as the "use milibars" selector. You will need to program a button or keypress to "LuaToggle VRI_SetBaro" with parameter 0, and

you can then toggle between the two modes.

The important parts of the program are all here, in three little lumps. First the part called when the FS BARO value changes—it's in

offset 0330 and is in 1/16ths of a millibar:

function setbarodisplay(off,val)

 -- val is BARO setting in 16ths of millibar

 if ipc.testflag(0) then

 -- need whole number of millibars

 val = (val + 8) / 16 -- Note rounding by addition of 8

 else

 -- need to convert to 100ths of inch

 val = ((val * 2992) / (1013.2 * 16)) + 0.5 -- note rounding

 end

 str = string.format("BAR%04d", val)

 com.write(dev, str, 8)

end

Then there's the part called when the dial on the M-Panel is turned. It provides "BARnnnn+" or "BARnnnn-":

function setbarovalue(handle, str)

 -- need to check only for BARnnnn+/-

 baro = tonumber(string.match(str, "BAR(%d%d%d%d)"))

 if baro ~= nil then

 if ipc.testflag(0) then

 -- if flag set, using millibars

 baro = baro * 16 -- FS units are 16ths

 else

 -- using inches

 baro = ((baro * 1013.2 * 16)/2992)+ 0.5 -- note rounding

 end

 ipc.writeUW(0x330, baro)

 end

end

And the small function called when the flag (0) is changed, so that the display can be toggled between inches and mb (hPa):

function flagchanged(n) -- n is the flag number, but we know that is 0

 setbarodisplay(0x330, ipc.readUW(0x330))

end

Finally, right at the end there's all-important part initialising the display and setting the event "traps" for the flag changes, FS offset

changes, and the dial being turned on the device:

flagchanged(0) -- ensure initial value set

event.flag(0, "flagchanged")

event.offset(0x330, "UW", "setbarodisplay")

event.VRIread(dev, "setbarovalue")

That's it! Have fun!

Published by Peter L. Dowson, 3rd March 2010

