
FSUIPC: Lua Library Reference
(for FSUIPC4, version 4.60 and later, and FSUIPC3 version 3.98 and later)

This document merely lists the facilities added to the standard Lua library complement via four libraries ―ipc‖,

―logic‖, ―event‖ and "gfd".

The ipc library adds all of the facilities needed to interact with FS and FSUIPC (or ESPIPC), whilst the logic library

justs adds bit-oriented logical operations which are otherwise missing from Lua but needed when dealing with

arrays of bits for switches and options in FS. The event library provides ways of having dormant Lua plug-ins

containing functions activated by events in FS. Events which can be so detected include joystick buttons, keyboard

combinations being pressed/released, FS controls being used, and FSUIPC offsets changing values.

The IPC Library

Routine template Description

n = ipc.ask(“string”) This prompts the user via a message window on the FS screen,

displaying the ―string‖ as a message. This can be single or

multiple-lined (use ‗\n‘ for a new line).

The user answers with a string value, which is the result of the call.

It is then up to the Lua program as to how to interpret this.

The window and the reply operate just like the Window used to

prompt users for mouse macro names.

ipc.btnPress(btn-number)

ipc.btnRelease(btn-number)

ipc.btnToggle(btn-number)

These provide direct control over the virtual buttons supported by

FSUIPC (those normally only controllable via offsets at 3340–

3363).

The button number is 0–287, and Press, Release, Toggle do as they

suggest.

Note that because Lua plug-ins are running in a separate thread

(one per plug-in), any running Lua plug-in which is operating the

virtual buttons can be detected doing so in FSUIPC4‘s ―Buttons‖

tab, and therefore such buttons can be programmed therein—

provided the plug-in IS actually looping and toggling a fixed

button, of course.

n = ipc.buttons(joynum)

n = ipc.buttons("joyletter")

Get button settings: ―joynum‖ is a joystick number, the same as

shown in FSUIPC‘s Button assignments tab. If you use joystick

lettering, you can put the letter here instead but it must be ""

quotes, as a string.

Provided the joystick is one being scanned by FSUIPC (i.e. it has a

button assignment), this function returns the 32-bit mask showing

which buttons are currently ―on‖ (1) and ―off‖ (0). Use the logic

functions to test or isolate bits. Button 0 is the lowest bit (2^0) and

so on.

ipc.control(n)

ipc.control(n, param)

Sends the FS or FSUIPC control ‗n‘, with the optional parameter

(assumed 0 if omitted).

FS controls are listed in a List of ...‖ controls document provided

separately. FSUIPC added control numbers are listed in the

Advanced User‘s guide.

ipc.display(“string”)

ipc.display(“string”, delay)

Displays the given string value in FS, in a sizeable and undockable

window entitled ―Lua display‖. The maximum string which will

be displayed is 1023 characters, including new lines (\n) codes.

If the delay parameter is provided (it is a number) it specifies how

long the display should stay for, in seconds. To remove a display

prematurely, send a null string (―‖).

Note that there is only one such window for all Lua plug-ins. The

last one wins!

See also ipc.lineDisplay

n = ipc.elapsedtime() This returns the number of milliseconds since FSUIPC was started.

It is the same as the value shown in the Log files.

ipc.exit() This terminates the current Lua plug-in thread. For plug-ins using

the event library this is the only programmatic way of doing so, as

the registration of the event processing functions effectively keeps

the thread idling, waiting for those events, until the thread is forc-

ibly killed by the Kill control or by re-loading the same plug-in.

x = ipc.get(“name”) Retrieves a Lua value (any type) previously stored as a Global by

―ipc.set‖. This mechanism provides a way for a Lua plug-in to pass

values on to successive iterations of itself, or provide and retrieve

values from other Lua plug-ins.

State, x, y, cx, cy =

ipc.getdisplay()
This gets information about the current "Lua display" Window, as

used by the ipc.display function. The values returned are:

State = 0 for no display, 1 for docked, -1 for undocked

x, y are the screen coordinates of the top left corner.

cx, cy are the width and height, respectively.

n = ipc.getLvarId(“name”)

This gets the ID of the current FS local panel variable identified by

the name given. These variables are L: <name>. You can provide

the L: part explicitly or leave it out.

The value returned is numeric in the range 0 to 65535, or nil if the

variable is not available.

n = ipc.getLvarName(id)

This gets the name of the current FS local panel variable identified

by the id value, a numeric in the range 0 to 65535. These variables

are L: <name> , but the result provided is only the ,name> part,

without the L:

 The value returned is a string, or nil if the variable is not available.

To get all current LVars you can iterate from 0 upwards until nil is

returned.

ipc.keypress(keycode)

ipc.keypress(keycode, shifts)

Sends the specified key press to FS (provided it has keyboard

focus). If the ‗shifts parameter is omitted a normal unshifted

keycode is sent and a press-and-release. The Advanced User‘s

guide gives a list of keycodes and shifts.

ipc.keypressplus(keycode)

ipc.keypressplus(keycode, shifts)

ipc.keypressplus(keycode, shifts,

options)

Same as the ipc.keypress function, above, except that the

keypresses are still sent whilst FS is inside a menu dialogue, and

the following additional options are provided, according to the

value of the "options" parameter:

0 or omitted = press-and-release, as for ipc.keypress

1 = press key, not press-and-release

2 = release key, not press-and-release

To which optionally one or both of these can be added:

4 = change focus to FS before keystroke

8 = return focus to originally active window after keystroke (this

needs a previous or concurrent '4' option to get the active window

remembered).

ipc.lineDisplay(“string”)

ipc.lineDisplay(“string”, line)

A variation on the ipc.display function, this also displays the given

string value in FS, in a sizeable and undockable window entitled

―Lua display‖, but in this case the maximum string is 255

characters, and any new line codes will be stripped out.

This function provides line selection and scrolling effects,

controlled by the "line" parameter as follows:

line = 0 (Or omitted): Clears the display and puts this text

(if any) in the first line. Provide a null string ("") to

simply initialise the text buffers.

line > 0 Specifies the line number for this text, from 1 to 32

(max). Line 1 is the top line. Lines above this,

between it and the last line written, are cleared.

line < 0 Adds this text as another line in the list, following

the last one sent. The line parameter gives the

negative of the maximum line number to be used

(counting from 1, max 32), and if this line would

be placed there, the display is scrolled up one line

before it is added.

ipc.log(“string”) Logs the string provided. The log entry goes to the FSUIPC log

gile unless either the Lua plug-in is being run in debug mode (Lua

Debug control), or Lua logging is enabled in the FSUIPC options.

In these two cases the log message goes to the Lua plug-in‘s log

file instead.

ipc.macro("macroname")

ipc.macro("macroname", parameter)

Executes the named Macro, named in the same format as you see

in the FSUIPC assignment drop-downs. For example:

ipc.macro("PMDGquad: cutoff1")

executes the macro named "cutoff1" in the Macro file

"PMDGquad.mcro".

The optional parameter should be an integer between -32768 and

32767 (or 0 and 65535 for unsigned values).

Note that the facility can be used to execute other Lua plug-ins too,

for example:

ipc.macro("Lua display vals")

or, indeed, any of the Lua controls.

n = ipc.readDBL(offset) Reads the double floating point (64-bit) value at the given IPC

offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readFLT(offset) Reads the single floating point (32-bit) value at the given IPC

offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readDD(offset) Reads the 64-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readLvar(“name”)

This reads the current value of the FS local panel variable called

―name‖. These are L: <name> values. You can provide the L: part

explicitly or leave it out.

The value returned is numeric, or nil if the variable is not available.

n = ipc.readSB(offset) Reads the 8-bit signed byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readSD(offset) Reads the 32-bit signed integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readSTR(offset, length) Reads the string at the given IPC offset, with the length as

specified.

The string can contain any byte values, including zeroes. It is not

restricted to being ASCII. In this respect it can be considered as a

block of offsets, or a structure without named elements.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

x1, x2, x3 ... =

ipc.readStruct(offset, valuelist,

...)

for multiple groups:

x1, x2, x3 ... =

ipc.readStruct(offset1,

valuelist1, offset2, valuelist2,

...)

Reads multiple values from one or more groups of successive IPC

offsets, each starting with one given explicitly.

The offsets can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The lists consist of one of more entries defining numbers and types

of values, as ‗nTYPE‘. Types supported are:

UB unsigned 8-bit byte
UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte
SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value
DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters (in this case the preceding number,

n, gives the length not a repeat count)

The values are assigned in order to the variables on the left-hand

side. For example:

A, B, C, S, V, W =

 ipc.readStruct(0x1234, ―3SB‖, ―12STR‖, ―2DBL‖)

Assigns 6 values (not 17), in order:

A = the signed byte at 0x1234

B = the signed byte at 0x1235
C = the signed byte at 0x1236

S = the <= 12 character string at 0x1237

V = the double float value at offset 0x1243
W = the double float value at offset 0x124B

n = ipc.readSW(offset) Reads the 16-bit signed word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUB(offset) Reads the 8 bit unsigned byte value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUD(offset) Reads the 32-bit unsigned integer value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

n = ipc.readUW(offset) Reads the 16-bit unsigned word value at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.set(“name”, value) Stores a Lua value (any type) as a Global with the given name.

This can be retrieved by this or any other Lua plug-in by using

―ipc.get‖. This mechanism provides a way for a Lua plug-in to pass

values on to successive iterations of itself, or provide and retrieve

values from other Lua plug-ins.

ipc.setdisplay(x, y, cx, cy) This changes attributes of the current "Lua display" Window, if

there is one displayed. This is the window used by the

ipc.display function. The values set are::

x, y give the screen coordinates of the top left corner.

cx, cy give the width and height, respectively.

It is best to read the current values first, using ipc.getdisplay,

modify them and write them back.

Note that there is ever at most only one Lua display window. This

command operates on that even if it was instigated by another Lua

plug-in.

ipc.sleep(msecs) Suspends execution of the plug-in for the given number of

milliseconds, allowing other threads to operate with less hindrance.

x = ipc.testbutton(joynum, btn) Tests a scanned button. ―joynum‖ is a joystick number, the same as

shown in FSUIPC‘s Button assignments tab. Provided the joystick

is one being scanned by FSUIPC (i.e. it has a button assignment),

this function returns the state of the specified button number (0–31)

as TRUE or FALSE.

X = ipc.testflag(flagnum) Tests one of the 32 flags (numbered 0–31) specifically available

for this plug-in and controlled by the added FSUIPC controls

(LuaFlag Set, Clear and Toggle). These are provided so that the

user can communicate with the plug-ins via assigned buttons or

keypresses.

ipc.writeDBL(offset, value) Writes the value provided as a double floating point (64-bit) value

at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeFLT(offset, value) Writes the value provided as a single floating point (32-bit) value

at the given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeDD(offset, value) Writes the value provided as a 64-bit signed integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeLvar(“name”, n)

This writes to the FS local panel variable called ―name‖. These are

L: <name> values. You can provide the L: part explicitly or leave it

out.

If the variable is not currently available, nothing happens.

ipc.writeSB(offset, value) Writes the value provided as an 8-bit signed byte value at the given

IPC offset. The offset can be specified in Lua format hexadecimal,

e.g. 0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeSD(offset, value) Writes the value provided as a 32-bit signed integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeSTR(offset, “string”)

ipc.writeSTR(offset, “string”,

length)

Writes the string at the given IPC offset, either with the same

length or extended or truncated to the length optionally specified.

The string will have a zero terminator added, so allow for this if

you don't specify a length. If it is extended it is with zeroes.

The string can contain any byte values, including zeroes. It is not

restricted to being ASCII. In this respect it can be considered as a

block of offsets, or a structure without named elements.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeStruct(offset,

valuelist, ...)

for multiple groups:

ipc.writeStruct(offset1,

valuelist1, offset2, valuelist2,

...)

Writes multiple values from one or more groups of successive IPC

offsets, each starting with the one given explicitly.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The list consists of one of more entries defining numbers and types

of values, as ‗nTYPE‘. Types supported are:

UB unsigned 8-bit byte

UW unsigned 16-bit word
UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word
SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point
FLT 32-bit single floating point

STR string of ASCII characters (in this case the preceding number,

n, gives the length not a repeat count)

The values to be written must follow, in the parameter list, the

Type specifier. For example:
ipc.writeStruct(0x1234, ―3SB‖, 55, 66, 77,

 ―12STR‖, ―a string‖, ―2DBL‖, 1.234, 3.456)

Writes 6 values (not 17), in order:

55 to the signed byte at 0x1234

66 to the signed byte at 0x1235

77 to the signed byte at 0x1236

―a string‖ with zero padding to the bytes at 0x1237

1.234 to the double float value at offset 0x1243

3.456 to the double float value at offset 0x124B

ipc.writeSW(offset, value) Writes the value provided as a 16-bit signed word value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUB(offset, value) Writes the value provided as an 8 bit unsigned byte value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUD(offset, value) Writes the value provided as a 32-bit unsigned integer value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

ipc.writeUW(offset, value) Writes the value provided as a 16-bit unsigned word value at the

given IPC offset.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The Logic Library

Note that the names of all the functions provided in the logic library begin with a capitalised letter. This is

important. It prevents Lua interpreter errors arising from the use of the reserved words ―and‖, ―or‖ and ―not‖.

Note that all of these functions handle 32-bit unsigned values, no matter how the parameters are provided.

Routine template Description

X = logic.And(y, z) X = y & z

For example, in binary, 0011 & 1010 = 0010

X = logic.Nand(y, z) X = (~y) | (~z)., same as ~(y & z)

For example, in binary, 0011 nand 1010 = 1101

X = logic.Nor(y, z) X = (~y) & (~z)., same as ~(y | z)

For example, in binary, 0011 nor 1010 = 0100

X = logic.Not(y) X = ~y

For example, in binary, ~ 0011 = 1100

X = logic.Or(y, z) X = y | z

For example, in binary, 0011 | 1010 = 1011

X = logic.Shl(y, n) X = y << n

For example, in binary, 0011 << 1 = 0110

X = logic.Shr(Y, N) X = y >> n

For example, in binary, 1100 >> 1 = 0110

X = logic.Xor(Y, Z) X = y xor z.

For example, in binary, 0011 xor 1010 = 1001

The COM Library

Routine template Description

Handle = com.open("port", speed,

haandshake)
This opens the serial comms port named "port" (e.g.

"COM1"), with settings:

Speed = baudrate, e.g. 115200 for VRInsight devices, often

4800 or 9600 for GPSs.

Handshake defines the protocol for controlling the flow:

0 = none

1 = RTS / DTR line levels

2 = XON / XOFF

3 = Both of the above

The port is always opened in 8-bit no parity mode.

The handle returned will be zero if the port could not be

opened. If the port is already opened by FSUIPC for use in its

handling of VRInsight devices, the com.open call will

succeed and be granted access to the same port.

com.close(Handle) This simply closes the port represented by the given Handle.

It should always be used before the Lua program terminates.

n = com.test(Handle) Returns the number of bytes of data available to be read on

the port represented by the given Handle.

str, n = com.read(handle,max)

str, n = com.read(handle,max,min)

Reads up to 'max' bytes from the port, returning them as a

string in 'str' with the number actually read returned in 'n'.

If the 'min' parameter is also given, this returns a null string

and n=0 until at least that minimum number of bytes are

available. It does not block waiting for them.

n = com.write(Handle, "string")

n = com.write(Handle, "string",

len)

Writes the string to the port. If the length parameter is

provided, the string is either extended by zero bytes to that

length, or truncated, whichever is the more appropriate.

The returned value gives the number of bytes actually sent (or

at least, placed in the buffer).

The Event Library

Routine template Description

event.button(joynum, button,

“function-name”)

event.button(joynum, button,

downup, “function-name”)

event.button("joyletter", button,

“function-name”)

event.button("joyletter", button,

downup, “function-name”)

Your processing function:

function-name(joynum, button,

downup)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when a given joystick button

changes.

 ―joynum‖ is a joystick number, the same as shown in

FSUIPC‘s Button assignments tab. If you use joystick

lettering, you can put the letter here instead but it must be ""

quotes, as a string. Note, however, that the function is called

with the translated number as its first parameter.

The joystick device concerned can be any supported device

on the FS PC or any WideFS client. This includes Windows

joysticks, GoFlight modules, and EPIC devices, but not the

Virtual Buttons.

The button number provided can be 0–31 for normal buttons,

32–39 for 8-way POV (local Windows devices only), or 255

to indicate that the function should receive all 32 button states

when any change.

Except for the button ―255‖ case, the optional ―downup‖

parameter specifies the change to be detected:

Omitted when pressed

1 when pressed

2 when released

3 when pressed or released (see Note * below)

The function is called with the joystick, button and downup

details so that the same function can, if desired, be used for

more than one such event.

In the special case of the button being specified as 255, then

any button change (buttons 0–31, not POV) on the specified

joystick will result in the function being executed with the

button state provided in the ‗button‘ parameter as a 32-bit

mask—bit 0 referring to button 0 and so on.

event.control(controlnum,

“function-name”)

event.control(controlnum, delta,

“function-name”)

Your processing function:

function-name(controlnum, param)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when the specified FS

control occurs. FS controls are those numbered from 65536

upwards, and listed in my FS control lists.

If the control is an axis-type control, with a parameter, you

can limit the flood of calls you might otherwise get for a

changing axis by specifying the ―delta‖ parameter. This is a

positive number which tells FSUIPC to only call the function

when the parameter from FS changes by at least that amount.

The control number and its parameter are supplied to the

function so that the same function can, if desired, be used for

more than one such event.

event.flag("function-name")

event.flag(flag, "function-name")

Your processing function:

function-name(flag)

Executes the named function whenever one of this plug-ins

Lua flags is changed (by one of the LuaSet, LuaClear or

LuaToggle controls).

If no flag number (0–31) is provided, any of the 32 changing

will trigger the event. Otherwise only the selected flag will do

so.

The flag number provided to the named function is the one

which changed to trigger the event.

event.gfd("function-name")

event.gfd(model, "function-name")

event.gfd(model, unit, "function-

name")

Your processing function:

function-name(model, unit)

This should normally start with a

call to gfd.GetValues(model, unit)

which makes all the the inputs

accessible within the event

processing function. See details in

the gfd section below.

This executes the named function whenever an input occurs

on the identified GoFlight device(s).

If both "model" and "unit" parameters are omitted, inputs

from all connected devices will attempt to trigger this

function, whilst if only the "model" is given, only all units of

that model type will.

The "model" parameter should normally be one of the fixed

model names listed in the gfd library section below. these are

pre-defined and equated to internal model numbers, in the

range 1 to the maximum number of model types.

Unit numbers start from 0 and are assigned in ascending order

by the Go-Flight interface, GFDev.DLL, which must be

accessible.

Note: If it is likely that you will get simultaneous events from

different devices, whether of the same model or not, then you

should consider having separate Lua plug-ins, as otherwise

you may lose some events—only one event is handled at a

time, and they are not queued.

event.intercept(offset, “type”,

“function-name”)

event.intercept(offset, “STR”,

length, “function-name”)

Your processing function:

function-name(offset, value)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when the specified FSUIPC

offset is written to by any FSUIPC or WideFS client

application or internal module or gauge. The write is

intercepted—i.e. prevented from actually affecting the

specified offset. It is then up to the intercepting Lua function

to decide whether to write the (possibly modified) value to the

same offset or not. If it does it must actively do it using the

appropriate ipc.writeXXX() function as described earlier.

Note that the offset write is only intercepted if it is explicitly

addressed in the request from the FSUIPC client. If the client

writes to the offset as part of a larger area, with an earlier

starting point, the intercept will not occur. However, for all

practical applications this should not present any problems.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The type is one of these:

UB unsigned 8-bit byte

UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters

The length parameter is omitted (or ignored) except for the

―STR‖ type, where it must define the string length (max 256).

The function is called with the offset, so that the same

function can, if desired, be used for more than one such event,

and also the current (new) value in that offset. This will be a

Lua number for all types except STR where it will be a string.

event.key(keycode, shifts,

“function-name”)

event.key(keycode, shifts,

downup, “function-name”)

Your processing function:

function-name(keycode, shifts,

downup)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when a given keypress

combination occurs.

The key code provided is one of the standard list (see the

FSUIPC Advanced User‘s guide), and the ―shifts‖ represent

and combination of these (add them up). An 8 or zero value

refers to the plain key:

1 Shift

2 Control

4 Alt

16 Tab

32 Windows

64 Apps

The optional ―downup‖ parameter specifies the change to be

detected:

Omitted when pressed

1 when pressed

2 when released

3 when pressed or released (see Note * below)

Note that repeated keys (auto-repeats resulting from holding

the keys down) are not processed.

The function is called with the key and downup details so that

the same function can, if desired, be used for more than one

such event.

event.offset(offset, “type”,

“function-name”)

event.offset(offset, “STR”,

length, “function-name”)

Your processing function:

function-name(offset, value)

Executes the named function (named as a string, ―...‖), which

must be defined before this line, when the specified FSUIPC

offset changes.

The offset can be specified in Lua format hexadecimal, e.g.

0x0AEC, or in decimal, or as a string e.g. ―0AEC‖.

The type is one of these:

UB unsigned 8-bit byte

UW unsigned 16-bit word

UD unsigned 32-bit dword

SB signed 8-bit byte

SW signed 16-bit word

SD signed 32-bit dword

DD signed 64-bit value

DBL 64-bit double floating point

FLT 32-bit single floating point

STR string of ASCII characters

The length parameter is omitted (or ignored) except for the

―STR‖ type, where it can optionally define the string length

(max 256). If the length is omitted for the STR type then the

string will be zero terminated and will have a maximum

length of 255 not including the final zero.

The function is called with the offset, so that the same

function can, if desired, be used for more than one such event,

and also the current (new) value in that offset. This will be a

Lua number for all types except STR where it will be a string.

event.vriread(handle, "function-

name")

Your processing function:

function-name(handle, "data")

This is an extension to the com library, described earlier,

specifically for use with VRInsight devices.

It executes the named function whenever an apparently valid

VRInsight input arrives on the identified VRInsight device.

The latter is identified by the "handle" to the device returned

by a com.open call made previously.

The "data" provided to the function will be the 1 to 8-

character string supplied by the device. Please see the

document "Lua plugins for VRInsight devices".

event.cancel(“function-name”) This simply removes all event tracking by the named

function. This is typically used in a Lua program which uses

one or two specific events to start a mode where many other

events need to be monitored, but which are no longer needed.

An example might be some processing for a landing aircraft.

Perhaps the gear being lowered is the initiating event, at

which more events are requested. After the aircraft has

landed, the program can cancel these latter events and go back

to waiting for the next time the gear is lowered.

NOTES

* If you really do need to detect both Key or Button presses and releases, and the action is possibly going to be

quite fast (i.e. not latching, as with a toggle switch), then you should specify the event separately for ―down‖ and

―up‖ rather than use the combined facility. This is because there is no queuing of different event types within each

event request—only a count of how many—so the order and nature of the press/release operations will be confused

and some may be seen wrongly.

The separate event calls for the press and release can of course still both specify the same function-name, so the

effect is still going to be similar. However, because of the asynchronous nature of the key/button scanning in

relation to the plug-in threads, whilst you will not miss any presses or releases this way, you may process them in

the wrong order.

You could, of course, deal with the problems either method may present by keeping a local flag showing the press

or release state, rather than relying only on the ―downup‖ parameter provided in the call to your function.

The Go-Flight Device (gfd) Library

This library provides full facilities for reading inputs from Go-Flight devices and writing to their displays. It is

currently programmed to cover the following devices ("models". note the model code, which is used when

addressing the model type in all functions, including the event.gfd function already described.

GF166 GF-166 Versatile Radio Panel

GF45 GF-45 Avionics Simulation Unit or GF-45PM Display Panel Module

GF46 GF-46 Multi-Mode Display Module

GFATC GF-ATC Headset Comms Panel

GFEFIS GF-EFIS Control Panel Module

GFFMC GF-FMC Flight Management Computer Module

GFLGT GF-LGT Landing Gear/Trim control module

GFLGT2 GF-LGT II Landing Gear/Trim control module

GFMCP GF-MCP Advanced Autopilot Module

GFMCPPRO GF-MCP Pro Mode Control Panel Module

GFMESM GF-MESM Multi Engine Start Module

GFP8 GF-P8 Pushbutton/LED Module

GFRP48 GF-RP48 Rotary/Pushbutton/LED Module

GFSECM GF-SECM Single Engine Aircraft Control Module

GFT8 GF-T8 Toggle Switch/LED Module

GFTPM GF-TPM Throttle/Prop/Mixture Control Module*

GFTQ6 GF-TQ6 Throttle System**

* The TPM is currently not recognised because of missing support in GFDev.DLL, and no information available on

its data formats.

** The TQ6 support is dubious at present. It may be withdrawn—feedback is welcome.

As with FSUIPC's GoFlight button support, you need GFDev.dll installed on the FS PC to use this library.

Normally it is installed for you by the GoFlight installer—in this case it should be in the same folder as your

GFconfig program, probably in Program Files\GoFlight. When installed correctly, FSUIPC should be able to find it

automatically, via the GFconfig installed registry entry. If not, you will have to place GFDev.dll in an accessible

place. For FSX this can be the FSX Modules folder. For FS9 and before do NOT, repeat NOT, put it into the

Modules folder or you will crash FS. Try the main Windows folder.

The list above is based on the latest version of GFDev.dll available at the time of publication: 1.92.0.8, dated 30th

November 2009. The latest version I have is always available from my Support Forum.

Another important point to know when trying to operate GoFlight displays and indicators, whether using GFdisplay.exe or these

new Lua facilities, is that (at present at least), the GoFlight drivers do not co-operate well with other using programs. By all

means you can share access to knobs and switches, but the GF drivers seem to want to write to all displays and indicators on a

module even if only configred to use some of them. For each GoFlight unit you may have to make the choice: GF driver or

Lua/FSUIPC plug-in.

The full reference to the functions available in the Library is tabulated on the next page.

The GoFlight coverage may be revised from time to time. The test program (gfdDisplay.lua) supplied with this

package will show you what is covered. If you run this test program (i.e. assign a keypress or button to the drop-

down entry "Lua gfddisplay.lua" and use it), this is what you should expect, with a descriptive display in a "Lua

display" window on screen:

1. All LEDs lit and all Displays showing 8888....

2. The brightness is modified, from 0 to 15 (full) in steps

3. LEDs are alternated 1 0 1 0 1 0 and 0 1 0 1 0 1 four times whilst the displays are alternated 123456 and

654321 (or as many of those digits as can be accommodated).

4. All displays and LEDs should then be blanked / extiguished.

5. The program then processes inputs forever (until Killed), displaying and logging the results.

Routine template Description

gfd.BlankAll() Blanks all digital displays (if possible) and switches all

indicator lights off.

n = gfd.Buttons() Returns the state of all buttons supplied by the last call to

gfd.GetValues, described below. The states of up to 32

buttons or switches are provided, and these are represented by

one bit each in the returned value. Bit 0 (2^0, worth 1) is the

first button, bit 1 (2^1, worth 2) is the second, and so on.

gfd.ClearLight(model, unit, id) This simply turns off the indicator light identified by the id

number, on the specified model and unit.

n = gfd.Dial(id) Returns –n (counter-clockwise turn), 0 (no turn) or +n

(clockwise turn) for the rotary dial identified by 'id' (0–7) in

the input data supplied by the last call to gfd.GetValues,

described below.

The values of 'n' will be 1 for a slow turn, but larger nmubers

are possible for faster turns -- except for the RP48, whose

dials only ever seem to return -1, 0 or +1.

n = gfd.GetName(model) This returns the string name of the device of type 'model'. For

instance, the name of the model type GFMCPPRO is

"GFMCPPRO".

n = gfd.GetNumDevices(model) This returns the number of connected devices of type 'model'.

gfd.GetValues(model, id) This obtains all of the current input values from the identified

device. These values are subsequently accessible using these

separate functions:
gfd.Buttons() gfd.Selector(id)

gfd.Dial(id) gfd.TestButton(id)

gfd.Lever(id)

n = gfd.Lever(id) Returns the input value from the lever axis identified by 'id'

(0–7) in the input data supplied by the last call to

gfd.GetValues, described above.

n = gfd.Selector(id) Returns the numeric position of the selector switch (multi-

position switch) identified by 'id' (0–7) in the input data

supplied by the last call to gfd.GetValues, described

above.

gfd.SetBright(model, unit, n) This sets the unit's display and indicator brightness, n=0 being

off and n=15 being brightest.

gfd.SetDisplay(model, unit, id,

"display text")
This attempts to write the given text (truncated if necessary)

to the display identified by the id number, on the specified

model and unit.

gfd.SetLight(model, unit, id) This simply turns on the indicator light identified by the id

number, on the specified model and unit.

gfd.SetLights(model, unit, on,

off)
This sets selected indicator lights on or off, on the specified

model and unit.

The 'on' and 'off' parameters are masks to determine those

indicators to be turned on (bits set in 'on') and those to be

turned off (bits set in 'off') Indicators not referenced by bits in

either mask are unchanged.

Bute are numbered 0 to 31, with 0 being 2^0, worth 1 and so

on. These numbers correspond to the indicator ids used in

SetLight and ClearLight.

n = gfd.TestButton(id) Returns true or false depending on the button/switch setting

(0–31) in the input data supplied by the last call to

gfd.GetValues, described above.

Published by Peter L. Dowson, 3rd March 2010

