
FSUIPC: Lua Plug-Ins
(For FSUIPC4/ESPIPC version 4.60 and later, or FSUIPC3 version 3.98 and later)

This document is part of the Manual for the LUA plug-in facilities first added to FSUIPC4 at

version 4.211, and FSUIPC3 at version 3.841. This part takes the form of a series of questions and

answers. The library reference document, "FSUIPC Lua Library" provides the technical data for

the FSUIPC Lua additions.

What is “Lua”?
It is a programming language. The best way to see and learn what it is all about is to visit this web page:

http://www.lua.org/about.html

What is a “plug-in”?
Plug-in is simply a technical term for a program which can be run inside or as part of another program. Effectively

FSUIPC is a ―plug-in‖ for FS. The Lua facilities in FSUIPC allow multiple plug-ins by loading and running

individual Lua programs.

Why has this been added to FSUIPC?
Because I am often asked by users, especially cockpit builders, how to do quite sophisticated things with FSUIPC’s

quite basic button programming facilities, and adding Lua plug-in capabilities makes those much more powerful and

much easier to deal with and see what is going on.

The use of the compound and conditional button programming facilities, combined with multiple parameter

assignments to buttons, is not only awkward, it is really pushing the simple parameter design in the INI files to the

limit.

What is provided in FSUIPC for Lua programming?

First, FSUIPC recognises all files placed into the Modules folder that have filetype ―.lua‖. These should all be Lua

programs, either in normal interpreted source format or in the ―compiled‖ format if desired (Lua provide a compiler

―luac.exe‖ which just saves a little loading time by pre-processing the source into a binary format easier for the

interpreter).

All .lua files are assigned a numeric reference and listed with it in the [LuaFiles] section of the FSUIPC INI file. It

is the reference number which is encoded into other references to Lua programs within the INI file – much like the

way Macro files are handled.

When there are Lua files in the modules folder, FSUIPC adds a number of new controls for assignment in all of the

usual places – Buttons & Switches, Key Presses, and Axis Assignments. The controls added for each Lua program

are:

Lua <name> to run the named program

Lua Debug <name> to run the program in debug mode (more below)

Lua Kill <name> to forcibly terminate the named program, if it is running

Lua Set <name> to set a flag (0-31 according to parameter) specifically for the named program to test

Lua Clear <name> to clear a flag (0-31 according to parameter) specifically for the named program to test

Lua Toggle <name> to toggle a flag (0-31 according to parameter) specifically for the named program to test

There’s also a general Lua control ―Lua Kill All‖ to forcibly terminate all currently running Lua programs.

FSUIPC currently allows up to 256 simultaneously running Lua programs, each independently running in their own

FS thread. When you start a Lua program running which is already running, the previous incarnation is first

ruthlessly and unceremoniously terminated. Because of the termination facilities provided it is not a problem having

a program which is designed to sit in a loop forever doing things, like monitoring the state of FS values.

http://www.lua.org/about.html

There are currently three explicitly reserved Lua names, for programs which are run automatically if present:

ipcinit.lua automatically run as soon as FSUIPC has initialised (and for FSX or ESP, connected correctly to

SimConnect).

ipcready.lua automatically run when FS is really ―ready to fly‖.

ipcDebug.lua automatically loaded before any Lua program which is started in Debug mode.

What about access to FSUIPC offsets, FS facilities, and files?

The main useful standard libraries provided with Lua version 5.1 are present and already loaded when any FSUIPC

Lua plug-in is run. These are:

package Facilities for loading and building Lua modules

table Table manipulation, operating on arrays or lists

io File input and output facilities

os Operating system functions like date, time, plus more ambitious stuff

string String manipulation

math All the maths functions you could possibly desire

debug Functions to help get more complex Lua programs working

Note that in the early releases I have not specifically removed anything from these libraries. That doesn’t mean that

all of their facilities will work, nor are safe to use without risk of crashing FS or distorting its operations. But that’s

one of the risks of power. Looking at the Package and Operating System functions I can see plenty of scope for

getting into real trouble! (If folks would please notify me when they find something so dangerous it should be

removed, I will gradually make it all ―safer‖, but hopefully still not restrictive).

In addition to the built-in libraries, full LuaSockets support has been included, with all the major modules also built

in. This is a package by Diego Nehab, and thanks are due to him. For reference data and the full package, go to

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/

These are the built-in (pre-loaded) modules:

 socket.core the code module DLL, supporting the Sockets facilities

 mime.core the code module DLL, supporting the Mime facilities

 ltn12.lua ancillary routines used especially by Mime

 socket.lua helper routines for Sockets, and the man module called by applications

 mime.lua helper routines for Mime support

Note that these modules, though built-in, are not automatically enabled (loaded) ready for drect use in your Lua

plug-ins. You still need to do

 require("socket") for Sockets support, and/or

 require("mime") for Mime support.

but you do not have to have any of the modules listed above present in the FSUIPC folders. They are all pre-loaded.

If you download the full LuaSockets package you will find all sorts of other little Lua examples. You can install all

the parts not listed above in a 'Lua' folder, within the FS modules folder, if you don't want to run the directly from

FS. Among the goodies you'll find there are these Lua modules ("modules" are loaded by Require), which you

should place in a subfolder, modules\Lua\socket:

 socket\ftp.lua For FTP file transfers: use require("socket.ftp")

 socket\http.lua For HTTP web access: use require("socket.http")

 socket\smtp.lua For SMTP emails: use require("socket.smtp")

 socket\tp.lua For basic TP: use require("socket.tp")

 socket\url.lua For basic URL access: use require("socket.url")

http://www.tecgraf.puc-rio.br/~diego/professional/luasocket/

The only changes to the standard libraries so far are as follows:

(a) Made the os.exit function merely exit and terminate the Lua thread it is executed in. (It is the same as the

added IPC library ipc.exit function).

(b) Made the print function act identically to the added IPC library ipc.log function.

(c) Made the io library function send the data to the log when the stdout or stderr devices are specified.

(d) Changed the searching for modules, carried out by require, to look in the FS Modules folder for Lua

modules, and a Lua subfolder (modules\lua) for Lua modules and code DLLs. I recommend that all Lua

add-ons which are not run directly by FSUIPC, be placed in the Lua subfolder, or subfolders off that. This

applies whether they are Lua modules or DLLs. DLLs should not be placed in the Modules folder directly,

especially in FS2004 or before, as this would likely crash FS on loading.

In addition to the standard libraries, FSUIPC adds five more:

 ipc Facilities for interfacing to FS and FSUIPC.

 logic Bit-manipulating logic facilities, otherwise missing in Lua

 event Facilities for taking action on events in FS – arising from buttons, keypresses, FS

controls and FSUIPC offset changes

 gfd Go-Flight Device facilities: for reading GF switches, dials, levers, and setting GF

displays and indicators, using the GoFlight module "GFDev.dll".

 com Facilities for handling serial port (COM) connected devices.

These are documented in a separate document which you should find with this package.

On top of these facilities, when a Lua plug-in is run because of an FS control (Lua <name> or Lua Debug <name>),

any parameter passed with that control is available to the Lua program as a variable called ipcPARAM. This might

be particularly useful if the control is assigned to an Axis or POV, where the axis or POV value is thereby passed to

the program.

The facilities provided by Lua and these libraries are certainly quite sufficient to actually program working

subsystems for your aircraft cockpit. Currently there are no specific hardware interfaces – you’d talk to most current

hardware via FSUIPC offsets, or by using USB-type filenames and the ―io‖ file functions. If folks would like direct

interfaces to popular hardware interface cards, those used for display driving, and button/switch/dial inputs, I’m sure

these can be built in, or added on, perhaps partially as Lua programs themselves, or with some extra libraries

specifically oriented. Mostly I cannot do these directly myself, or at least not without the hardware in question, but

I’d be glad to discuss ways and means with those who could either do it, or assist appropriately.

What about some examples, please?

Included in the package you have downloaded are many LUA files, ready to be used:

ipcDebug.lua The auto-loaded program section loaded before any Lua program being debugged.

It enables line tracing to the Lua program’s own Log file.

TripleUse.lua This is an example of using the event.button() function for getting three separate

uses from a single button, by single click, double click and longer press methods.

It could be extended to cover many buttons. It would need running initially by an

ipc.macro() call in ipcReady.lua.

log lvars.lua A useful little routine which logs all of the currently available local panel variables

(LVARS) which can be read and written using the Lua ipc library, or written using

FSUIPC Macros via the ―L:<name>,action‖ facilities. The values are listed in the

Log initially and when any change, and also displayed as they change on the

screen, in the Lua display window.

 Use this to work out how to define your macros in order to operate many switches

and facilities otherwise inaccessible without using a mouse.

Init pos.lua A small program which simply places the user’s aircraft at a fixed place with a

given airspeed. (The airspeed setting only works correctly with FSX or ESP).

Display vals.lua Continuous on-screen displays of some aircraft variables. Undock the window for

greater clarity.

Record to csv.lua A data recorder, writing lines of important data about the aircraft at up to 20 times

a second, The file is in CSV format, displayed nicely in Excel and similar

programs. [Note that the original version included a syntax error in line 49].

Fuel737.lua

Payload737.lua These two examples demonstrate the ipc.keypressplus function, which can send

keypresses to FS which even work in Menus, and when FS doesn't have the

focus—the function provides options for changing focus there and back. The

examples are merely editing fixed values into the default 737 fuel and payload

menus, respectively, but could be generalised with more sophisticated Lua

programming.

Landing.lua A (failed) attempt to show off some of the things you can do using the event

library. This one tries to provide landing assistance automatically, but needs a lot

of development and tailoring. Nevertheless, the example does show some

interesting ideas for the Event library facilities.

Liar.lua [For FSX only]. Demonstrates the facilities to "spoof" values being read from

FSUIPC4 offsets by other applications, including other Lua plug-ins.

Testsrvr.lua

Testclnt.lua A pair of programs, Server and Client, which can be run together (start the server

first) to test / demonstrate the LuaSockets facilities built into FSUIPC. As defined

they run in the same FS session (host is defined as "localhost"), but you can

change this to run between two PCs running FS if you like, or simply run one of

them directly under the Lua stand-alone interpreter—but in the last case you'd

need to take care of the correct LuaSockets installation.

SlaveServer.lua

MasterClient.lua Another pair of LuaSockets demos. These are more eye-catching when used, but

you do need two PCs running FS. You'll need to edit the Host name in both to be

the name of the Server PC, which will have its user aircraft slaved to the Client,

which acts as Master. It works quite well for a rather crude un-optimised

implementation—not smooth, but not as jerky as I thought it would be (actually

flyable watching the Salve). If one PC is more powerful than the other it works

best with the more powerful acting as the Master Client. The Salve is best put into

Slew mode, though it will work in normal flight mode (jerkier) and may well work

okay in Paused mode.

gfdDisplay.lua Test program for all known and connected GoFlight devices, using the gfd library.

GFpower.lua A plug-in which checks various power needs (battery, avionics switch etc), and

sets the brightness of attached GoFlight displays on or off accordingly, and

automatically loads and runs other Lua plugins according to attached GoFlight

devices. e.g "GFMCP.Lua" for a GoFlight MCP.

VRI_SetMach.lua An example plugin for the VRInsight MCP Combi to allow it to be used with

Mach mode speed control as well as IAS. This is loaded and run automatically via

the FSUIPC VRInsight facilities, set up as explained in another document

included with this package entitled "Lua plugins for VRInsight devices"

VRI_SetBaro.lua An example plugin for the VRInsight M-Panel to allow it to show the altimeter

BARO setting in millibars (hectoPascals) as a switchable alternative to inches.

This is loaded and run automatically via the FSUIPC VRInsight facilities, set up

as explained in another document included with this package entitled "Lua

plugins for VRInsight devices"

F1MustangSwCtl.zip Contains a Lua plugin for FSX to emulate certain mouse click controls for the

Flight1 Cessna Mustang subpanel and console switches, along with an

"ipcReady.lua" to show one way to get it loaded ready for use. Contributed by G

C McMillen, with thanks.

ThrustSym.lua, ThrustSym4.lua, SyncAxis.lua

 Lua plug-ins which actively synchronise thrust settings (and other levers in the

case of "SyncAxis") by setting the best intermediate value when the levers are

close enough (within a specified distance). These have been kindly donated by

support forum user "Muas", with thanks.

