
 1

FSUIPC4 for Advanced Users (for FSUIPC4 Version 4.60, March 2010)

For changes since the previous version, please review the History document

Contents

Options in the FSUIPC4.INI file ... 2
 Message Window Options .. 2
 General weather options .. 2
 Winds .. 3
 Visibility ... 4
 Clouds .. 5
 Other general user options ... 5
 Less used technical options ... 8

AUTOSAVE: INI-file only options .. 10

Logging facilities .. 10

Monitor facilities ... 11

JoyNames .. 12

Profiles .. 12

Button Programming .. 12
 Format of button definitions .. 14
 Sequences, combinations and mixtures ... 16
 Compound button controls ... 17
 Adding offset conditions ... 19
 Errors in button parameters .. 21

Keyboard programming ... 22
 Format of key definitions .. 22
 Errors in key parameters .. 23

Additional “FS” controls added by FSUIPC4 ... 23

Macro controls ... 31
 Gauge local variable access (L:vars), by macro .. 35

Automatic running of Macros or Lua plugins ... 36

Axis assignments ... 36

Programs: facilities to load and run additional programs .. 38

Assignment of additional axis controls .. 38

Multiple joysticks for multiple pilots ... 39

Helicopter pitch and bank trim facilities ... 40

Message Filters ... 40

Muliple INI files .. 40

APPENDIX 1: “Do more with your joystick” (A user contribution) 42

APPENDIX 2: About the Aircraft Specific option and “ShortAircraftNameOK” 48

APPENDIX 3: Handling VRInsight devices in FSUIPC4 ... 51

 2

Options in the FSUIPC4.INI file

In a user-registered FSUIPC4 installation, all of the interesting options can be controlled through the Options and

Settings window obtained by selecting the FS Add-Ons menu, then FSUIPC (ALT, D, then F). This is the recommended

way, and allows changes ‗on the fly‘. Changes made in that dialogue are recorded in a file so that they are retained for the

next re-load.

Almost all of these options are all recorded in the [General] section of FSUIPC4.INI, which is an editable text file

initially created for you in the Modules folder (or, under Windows Vista, in the Flight Simulator X Files folder, in

Documents). Only those parameters shown underlined are not adjustable within the Settings window (for a registered

user).

Message Window Options

Unlike almost all of the other parameters here, these are all available to unregistered users as well as those who have

registered.

ShowMultilineWindow: This will be ―Yes‖ if the relevant checkbox on FSUIPC4‘s front page (About+Register) is

checked. Multiline messages are directed to a translucent window like the one used by FS‘s ATC.

SuppressMultilineFS: Determines whether multiline messages are forwarded on to FS for its message window. If the

above option is ‗Yes‘ then this setting isn‘t relevant.

SuppressSingleline: Operates the option to prevent all single line messages in FS‘s (or AdvDisplay‘s) message window.

Such messages are simply discarded if this option is selected.

See also WhiteMessages and AdvDisplayHotKey, both covered in the ‗Other Options‘ section.

General weather options

ClearWeatherDynamics: FSX implements a weather changing algorithm, ―weather dynamics‖, which allows the

weather to change individually at each weather station with time. FSUIPC4 will, by default, try to turn off the dynamic

action when requested via the New Weather Interface, or automatically when weather is set via the FS98 or FS2000-

based ‗Advanced Weather Interface‘. In actual fact it appears it cannot turn it off completely, only slow it down. The

option is set in FSUIPC‘s Miscellaneous page and by this INI parameter.

OwnWeatherChanges: This is defaulted to ‗No‘. When set ‗Yes‘ it allows the weather filtering options for clouds,

winds and visibility to be applied to FS‘s own weather. This allows the wind smoothing and the (still experimental)

graduated visibility options to be set. The option is controlled by check boxes on the Winds, Visibility and Clouds tabs.

WeatherReadFactor: FSUIPC4 is reading the weather at the aircraft (interpolated from three stations), the weather at

the nearest station, and the global (or default) weather, all at regular intervals—with the aircraft weather being read at

intervals determined by the ‗WeatherReadFactor‘ value. Currently this directly sets the minimum interval in half seconds,

defaulting to 2.

Since version 4.20, this parameter also, controls the frequency of FS weather updates when the ―allow changes to FS own

weather‖ option (OwnWeatherChanges above) is set.

There shouldn‘t be any need to change this, but if you think it may be overloading your system too much you can try a

longer interval, up to 30. Alternatively, if you have no need for any weather reading or writing activities in FSUIPC4,

you can stop them all by setting this parameter to 0.

In the options on-line this parameter is currently changeable on the Winds tab.

WeatherRewriteSeconds=1: This specifies the number of seconds for SimConnect to ―blend‖ re-written weather into

the current weather. Theoretically the changes should be smoother with this delay, though in experiments not much

difference is really seen between 1 and 30 seconds. Ideally, for wind smoothing and graduated visibility the value 0

(zero) would be best, and you can try it—but be warned. It then creates a lot of stuttering!

SmoothBySimTime=No: Set this to ‗Yes‘ to make all the weather smoothing operate based on the elapsed time in FS,

instead of the real system time. This has the advantage that it stops whilst FS in in menus, or paused, and runs faster or

slower according to the FS Simulation Rate. To use this way of smoothing, change this [General] parameter:

Note that the smoothing is still reset when you load a new flight, or move the aircraft location via the menu, or

change the weather mode (theme / user / real, etc).

 3

Winds

MaxSurfaceWind: This allows the surface wind to be limited to a specified maximum wind speed, in knots. This facility

is disabled if the value assigned here is 0.

WindDiscardLevel: This parameter sets a wind speed above which inputs from an external weather control program,

using the FS98 interface (not the Advanced or New Weather Interfaces) are ignored. The default for this value is 400

knots. If a weather control program tries to set a wind speed above this, it is ignored and the previously set speed for this

wind layer is retained. (This parameter is provided specifically to prevent problems occurring with programs using

corrupted data from an Internet download or other problems). Set this parameter to 0 to disable this check altogether.

WindLimitLevel: This parameter sets a limit on the wind speed which can be accepted from an external weather control

program, using the FS98 interface (not the Advanced or New Weather Interfaces). The default for this value is 200 knots.

If a weather control program tries to set a wind speed above this (but below the ―WindDiscardLevel‖ above), it is ignored

and 200 knots is set instead. Set this parameter to 0 to disable this check altogether.

UpperWindGusts: Set to ‗Yes‘ to make FSUIPC4 retain any upper wind gust information provided by FS or an external

weather control program. These are normally suppressed by FSUIPC4 because upper winds aren't gusty. Note: this

parameter is not operational if SuppressAllgusts has been enabled.

SuppressAllGusts: Set this to ‗Yes‘ if you feel that FS‘s simulation of wind gusts is unrealistic, or you simply want

things easy. If this is set to ―Yes‖ then the UpperWindGusts parameter is ineffective.

WindTurbulence: Set this to ‗Yes‘ to make FSUIPC4 generate some random turbulence in all wind levels. This will

range from none to extreme, but it will normally stay fairly mild. It will vary over time as well.

SuppressWindTurbulence: Set this to ‗Yes‘ to prevent any wind turbulence (but not Cloud turbulence—there‘s a

separate parameter for that).

SuppressWindVariance: Set this to ‗Yes‘ to prevent any wind variance (i.e directional instability). This affects both

―Variable winds‖ as set from the incoming METAR settings, but also the directional variation components of both wind

and cloud turbulence.

TurbulenceRate=1.0,5.0

TurbulenceDivisor=20,20,40,40

These control the Wind Smoothing wind effect emulations. The first Rate number is a multiplier for the turbulence wind

directional range, and the second is the multiplier for the turbulence wind speed range. The range of both is 0.0 to 10.0.

The first Divisor number is the number of steps needed to change the turbulence wind direction from one extreme to the

other (something most unlikely ever to actually happen, but this controls the speed of all changes), the second number is

for the turbulence wind speed, the third number is for wind direction variability (variance), and the fourth number is for

wind gusts (the range from 'normal' to 'max gust').

The maximum range of wind direction and speed changes to be experienced in turbulent conditions is obtained by

multiplying the relevant TurbulenceRate value by the FSX turbulence severity setting in FS (0-4), and, for wind speed

only, by 2% of the intended (‗normal‘) smoothed wind speed. So, for a 50 knot wind, moderate turbulence (2), the default

Rate parameter of 5.0 gives +/- 10 knots for speed changes.

This value is the extreme range. FSUIPC4 then computes a random target using a Normal, or Gaussian, approximation,

giving values clustering strongly close to the ‗norm‘. The increment computed from the maximum range and the relevant

Divisor parameter is used to move the current value towards the new value. When reached, a new target is computed, and

so on.

Note that this is all done independently for wind direction, speed and vertical effects, and separately too for gusts and

variance (which both have an imposed range, of course). The gust and variance effects are emulated using targets with a

normal distribution of greater standard deviation, so allowing the METAR-stated extremes to actually be reached

occasionally.

The increment rate is based on the frame rate for turbulence, but on an average of 5–10 Hz for gusts and variance.

WindAjustAltitude: (Apologies for mis-spelling). Set to ‗Yes‘ if FSUIPC4 should add the value specified in

WindAjustAltitudeBy to all the wind layer boundaries specified by an external weather control program using the FS98

interface (not the Advanced or New Weather Interfaces).

WindAjustAltitudeBy: See previous parameter. This is in feet and defaults to 2000.

WindSmoothing: This option controls the experimental wind smoothing option.

 4

WindSmoothness: This parameter defines the targeted degree of wind smoothing, with changes intended to be restricted

to a maximum of so many knots and so many degrees per second. The default is set to 5 (knots or degrees).

WindSmoothAirborneOnly: The option to smooth only when airborne allows the winds at the airport to be changed

and set as desired, before take off.

Visibility

VisibilityOptions: This determines whether the visibility options are enabled or not. The default (―No‖) disables all of

these options and also hides the relevant Tab in the on-line options dialogue.

MinimumVisibility: This parameter, which defaults to 0 (meaning it is inactive), is used to prevent any weather source

setting a visibility below a specified minimum. The value is set in hundredths of a statute mile (i.e. 100 = 1 mile). Note

that there may be a short delay (possibly a second or so) after a new low visibility has been applied before it is detected

and corrected by FSUIPC4.

MaximumVisibility: This parameter is used to prevent any weather source setting a surface visibility above a specified

maximum when there is any cloud layer with more than 2/8ths cover. The value is set in hundredths of a statute mile (i.e.

100 = 1 mile). Note that there may be a short delay after a new high visibility has been applied before it is detected and

corrected by FSUIPC4. The parameter is only effective if the value is greater than the MinimumVisibility parameter.

MaximumVisibilityFewClouds: This is the same as the previous parameter, except that it gives the maximum to be

used when there are no cloud layers of more than 2/8ths cover. The idea is that the extended visibility gives bluer skies

by day and more stars by night (but lower frame rates. Sorry, you can‘t win every way <G>).

MaximumVisibilityOvercast: This is the same as the previous parameter, except that it gives the maximum to be used

when there is at least one cloud layer of more than 6/8ths cover.

MaximumVisibilityRainy: This is the same as the previous parameter, except that it gives the maximum to be used

when there is any rain or snow. If it is raining and cloudy the lower of the applicable limits is used.

GraduatedVisibility: With this enabled FSUIPC4 attempts to provide a smooth change in visibility from the upper

altitude of the surface level visibility to a specified upper visibility at another, specified, upper altitude. The two

parameters, UpperVisibility and UpperVisAltitude, control this.

UpperVisibility: On FS2000 and FS2002 this parameter, which defaults to 6000 (60 statute miles), is used to prevent

any weather source setting a visibility above a specified maximum. The value is set in hundredths of a statute mile (i.e.

100 = 1 mile). If GraduatedVisibility is enabled, it is used in conjunction with the next parameter (on FS2004 too).

LowerVisAltitude: This is only used when GraduatedVisibility is enabled, and sets the altitude from which the

graduation should operate. Normally you leave this set at 0, which starts the graduation at the top of the surface visibility

layer.

UpperVisAltitude: This is only used when GraduatedVisibility is enabled, and sets the altitude by which the

UpperVisibility should be attained. Above this altitude the visibility stays fixed at this value. The default

UpperVisAltitude is 25000 feet.

ExtendMetarMaxVis: This checks the visibility being set and adjusts it in three specific circumstances, as follows:

1. If it is set to a value between 99.95 and 100.04 miles, it is reset to 6.20 miles. This is in order to rectify the

results from any programs that take the 9999 metre maximum METAR visibility and transmit it literally

as a number of 1/100ths of statute miles.

2. If the value is then in the range 6.15 to 6.24 miles (i.e. close to the 9999 metres maximum of a metric

METAR), it is adjusted to a random value between 6.20 miles and the current maximum value (which will

either be the MaximumVisibility parameter value, or 150 miles).

3. If the value is between 9.95 and 10.05 miles (i.e. close to the 10 statute mile maximum of a U.S.

METAR), then it is adjusted to a random value from 10 miles to the current maximum (which will either

be the MaximumVisibility parameter value, or 150 miles).

Note that the random addition is computed only once every five minutes, to avoid constant changes in visibility should

the weather control program re-write the value from time to time.

SetVisUpperAlt and VisUpperAltLimit control the option to impose an upper limit on the surface visibility layer.

 5

Clouds

GenerateCirrus: Creates an occasional extra cirrus layer when enabled.

OneCloudLayer: This defaults to ‗No‘. Set it to ‗Yes‘ to prevent there ever being more than one layer of clouds. This

may help get better performance on slower machines. It won‘t help much on faster machines.

CloudTurbulence: Set this to ‗Yes‘ to make FSUIPC4 generate some random turbulence in all cloud layers. This will

range from none to extreme, but it will normally stay fairly mild. It will vary over time as well.

SuppressCloudTurbulence: Set this to ‗Yes‘ to prevent any cloud turbulence from any source.

CloudIcing: Set this to ‗Yes‘ to make FSUIPC4 generate some random icing in clouds. This will range from none to

extreme, but it will normally stay fairly mild. It will vary over time as well.

MaxIce: The value here is 0–4 to limit the icing to that level (0 = No icing, 4 = Any icing), with the default set to 3 (just

preventing ―severe‖ icing, level 4). If the option is actually disabled the value is retained by saved as a negative number.

In this case –1 represents 0 but disabled, to –5 representing 4 disabled.

MinIce: The value here is 0–4 to ensure that icing is never below a given level (<=0 = No icing, 4 = Max icing). A value

set greater than MaxIce will operate only to make all icing the same as the MaxIce level.

Other general user options

PressureSmoothness: This sets the number of hundredths of hPa allowed to change per second. When this parameter is

set to 0 the pressure smoothing option is disabled.

TemperatureSmoothness: This sets the number of hundredths of degrees Celsius allowed to change per second. When

this parameter is set to 0 the outside air temperature smoothing option is disabled.

AdvDisplayHotKey: This allows you to assign a key press which, when used, will hide or (if there‘s no other reason it is

hidden) display the multliline message window. The keystroke is defined as in Flight Simulator‘s own controls, and

listed below, in the Button Programming section. For example, I use (and recommend) "CTRL+SHIFT+A" which would

be AdvDisplayHotKey=65,11

AllEngHotKey: This allows you to assign a key press which, when used, will re-select all engines on the currently

loaded aircraft. It is effectively the same as using the keypress E plus 1, 2, 3, 4 on the main keyboard, depending on the

number of engines, but the hot key will work when, apparently, the proper key sequence does not (on three engined

aircraft it seems). See the preceding entry for details of how the key is defined.

DisconnTrimForAP: When this option is enabled, FSUIPC4 disconnects the analogue elevator trim axis input to FS

whenever either the FS autopilot is engaged in a vertical mode (altitude hold or glideslope acquired), or a program, gauge

or module has disconnected the elevator axis via FSUIPC4 (offset 310A).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting

this parameter differently in that [JoystickCalibration …] section.

ZeroElevForAPAlt: controls the option for FSUIPC4 to automatically centre the elevator input each time the Autopilot

altitude hold mode is changed (switched on or off, including AP engaged changes too).

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting

this parameter differently in that [JoystickCalibration …] section.

MagicBattery: This reduces the discharge rate on the battery, keeping the voltage from dropping. If this is set ‗Yes‘ or 0

then no drop is allowed. If set ‗No‘ or 1 then the battery discharges normally. Any value from 2 to 999 acts as a divisor

on the discharge rate, so 2 makes the battery last twice as long, and so on. This is designed to assist in getting over the

apparent error in the airliners, which makes it discharge far too quickly before engine start.

SetStdBaroKey: This allows you to assign a keypress which, when used, will set the ‗Kollsman‘ window on the

Altimeter to the standard pressure, 29.92‖ or 1013.2mb. This is used when flying ‗flight Levels‘.

The keystroke is defined as in Flight Simulator‘s own controls as listed below in the Button Programming section. For

example, I use (and recommend) "CTRL+SHIFT+B" which would be

 SetStdBaroKey=66,11

TCASid: FSUIPC supplies data on the additional AI aircraft flying in the neighbourhood, for external TCAS or mapping

programs to display. Normally such aircraft are identified by Airline and Flight number, if there is one, otherwise by the

Tail number.

 6

However, other types of identification string can be chosen instead. In particular, the optional labels placed on the aircraft

by FS in the scenery view only shows tail numbers, so if you want to match them up you‘d want to set this parameter to

―Tail‖. The utility ―TrafficLook‖ can show these differences in its display. The full list of options here is:

 Flight for airline+flight, or tail number, as available (default)

 Tail for tail numbers only

 Type for the ―ATC type‖, generally only the Make

 Title from the aircraft title (in the .CFG file), truncated to 17 characters

 Type+ for the type as above, truncated if necessary, plus the last 3 characters of the tail number

 Model for the model description

TCASrange: Sets the maximum range at which AI aircraft will be added to the tables for external TCAS applications.

This defaults to 40 nm. A value of 0 turns off the limit altogether.

FixedTCASoptions=Yes can be added by the User if the above two settings are to remain locked, unchangeable except

by editing here, in the INI file.

SetSimSpeedX1: optionally sets a Hot Key which when used resets the simulation rate to x1 (i.e. normal). The keystroke

is defined as in Flight Simulator‘s own controls, as listed below in the Button Programming section. As an example, for

"CTRL+SHIFT+S" this would be

 SetSimSpeedX1=83,11

ThrottleSyncToggle: sets a Hot Key which operates a facility to make all throttle inputs, for any engine, affect the

throttle inputs to all engines. It‘s a toggle function—if it is on then using it again turns it off. If you are only using a

single throttle then this won‘t make a lot of difference except that every time you use toggle it FSUIPC4 will make the

throttle selection (i.e. the keypress E+1 … etc) apply to all engines. The keystroke is defined as in Flight Simulator‘s own

controls, as listed below in the Button Programming section. As an example, for "CTRL+SHIFT+E" this would be

 ThrottleSyncToggle=69,11

ThrottleSyncAll: controls whether the Throttle Sync Hot Key operates on the Prop Pitch and Mixture values as well as

throttles. This has no effect on jets and helicopters.

FixControlAccel: This, if enabled intercepts all controls, and changes the elapsed time location inside FS before

forwarding every different (non-axis) control, so that the time elapsed looks large enough for the control not to be

accelerated. If it sees successive identical controls then it leaves them, so they can be accelerated as normal. [This should

not be used by keyboard flyers!]

For a fuller explanation, please see the User Guide.

TimeForSelect: This specifies the number of seconds for which the SELECT controls (normally assigned to main

keyboard keys 1–4) should remain operative for controls that need them (like Engine select, or Aircraft Exit toggle),

despite the intervention of other, different, controls. To disable this, set the time to 0. Also note that whilst the time set

does not influence the similar automatic facility for the FS pushback (which ensures that the pushback direction remains

selectable), the latter will be switched off too if 0 is specified.

SpoilerIncrement: This controls the amount the FSUIPC4 ―Spoiler inc‖ and ―Spoiler dec‖ change the spoiler position

on each use. The default is 512, giving 32 steps from spolers lowered (0) and fully deployed (16383).

AileronSpikeRemoval

ElevatorSpikeRemoval

RudderSpikeRemoval: These control the options to ignore any aileron/elevator/rudder signals specifying maximum

possible deflection.

ClockSync: This facility synchronises the seconds values with that of your PCs system clock. It is defaulted off (=No).

Note that the synchronisation can only operate when the seconds = 0, and then it also has to set the miunte.

Consequently, it will only attempt to make an adjustment when the minutes difference is less than that set by the next

parameter:

ClockSyncMins: The minutes difference within which FSUIPC4‘s ClockSync facility will operate. This defaults to 5,

but note that if you want to reduce the occasions that FSX reloads textures, you will need to set this less. Conversely, if

you want the exact minutes value to be maintained as well as seconds, set this to 59 or 60.

WhiteMessages: This controls an option to forward external application to FS for display in white on green instead of

red. This only applies to non-scrolling messages. [I‟m not sure this works at present]

 7

UseProfiles: By default this will be set to ‗No‘, for backward compatibility, but set it to ‗Yes‘ if you want to use the User

Profile facilities rather than individual aircraft specific assignments and calibrations. The Profile facility has its own

chapter in the User Guide.

ShortAircraftNameOk: This is normally set ―no‖ to make sure all aircraft- or profile-specific Keys, Buttons and

Joystick Calibration settings only apply to the specific aircraft which was loaded at the time they were assigned.

However, if you have several ―paints‖ and which the settings to apply to all, you need to set this parameter to ―yes‖ then

shorten the aircraft name either in the [Profiles] section, if you are using profiles, or else in the [Axes.<name>],

[Buttons.<name>], [Keys.<name>] and [JoystickCalibration.<name>] section headings in the INI, as needed. The same

facility could, for example, give all aircraft starting ―Boeing‖ one set of assignments and all those starting ―Airbus‖

another.

Further, you can set ShortAircraftNameOk=Substring to make FSUIPC4 match the shortened <name> in the INI

profiles or section headings in any part of the full aircraft name, not just at the beginning.

ShowPMcontrols: This merely remembers the Project Magenta option setting for the assignment drop-downs.

ReversedElevatorTrim: This is probably not of any real use nowadays, as all the axes can be reversed in FSUIPC4‘s

joystick calibration facilities. Best left set to ‗No‘.

Note that the setting can be overridden for specific aircraft which have specific FSUIPC joystick calibrations by setting

this parameter differently in that [JoystickCalibration …] section.

PauseAfterCrash: This is the Miscellaneous option to set FSX into Pause mode after it has reloaded a flight after an

aircraft crash. It allows the aircraft to be moved away from danger, getting out of a continuous loop.

LoadFlightMenu, and LoadPlanMenu merely record the choice on the Miscellaneous options page for Add-Ons menu

entries to load flights and plans, respectively.

ZapSound: This defines the sound to be used when the FSUIPC control for AI traffic deletion (the ―Traffic Zapper‖) is

successfully applied. This must be the name of a WAV file in the FS sound folder, the default being ‗Firework‘.

If you do not want a sound just set it to ZapSound=None. However, the reason for the sound is so that you know

something has been Zapped. FSUIPC cannot tell what you can see, and the aircraft which is zapped may not be in your

display so you may not see it disappear.

ZapAirRange=1.5

ZapGroundRange=0.25

These control the range of operation of the AI aircraft zapping facility. The units are nautical miles. Air and Ground

refer to the user aircraft position, not the target. Note that you cannot change the acceptance angle explicitly. It is

adjusted automatically, in linear inverse proportion to the change in the range—so with a larger range you would need to

point the aircraft nose more accurately.

ZapCylinderAltDiff=n (where n is the maximum altitude difference), can be added to change the mode of the airborne

Zapper. With this added, the target for zapping is the nearest aircraft to the airborne user which is within the upright

cylinder of radius ZapAirRange and has a difference in altitude of n feet or less, including those on the ground below.

MouseWheelTrim: This records the setting of the ‗Use mousewheel as trim‘ option on the Miscellaneous options tab.

By default it is set to ‗No‘.

SaveDataWithFlights=Never: This records the ―Miscellaneous‖ tab option, telling FSUIPC whether to save ―offset‖

data when flights are saved, or not, and when to reload it. The options are Never, Menu, Auto, and Yes (―Yes‖ being the

option displayed as ―always‖ in the options tab). IPCBIN files are always saved with flights in all except the Never

mode.

For a complete explanation of the differences in the options, please see the User Guide. For technical folks and

programmers, note that the IPCBIN files produced contain a snapshot of the entire 65536 range of FSUIPC ―offsets‖, so

all sorts of data can be read from it using a hexadecimal editor.

BrakeReleaseThreshold=75: This controls a "brake release threshold", for when your braking is controlled by toe

pedals rather than by using the keyboard or joystick buttons assigned to non-axis brake controls. In the latter cases,

operating the brakes automatically releases the parking brake (and possibly may also cancel autobraking action). This

doesn't normally happen with brake axes being used for braking, as they are separate controls. That could be viewed as a

drawback of having proper toe brake action, so this parameter is provided to set the amount of braking needed to release

the parking brake. The number is a percentage of total braking -- so the default is 75%. If you set 0% it turns the facility

off. Pressure on both brakes to at least the set level is required, and the release action is not "re-armed" until both brakes

have returned to "off". The toe brakes must both be calibrated in FSUIPC4.

 8

JoystickTimeout=20: This timeout is no longer applicable except for EPIC USB devices, and may now be ignored.

BlankDisplays=No: Set this to Yes only if you want FSUIPC4 to blank and connected GoFlight displays during FS

initialisation.

PollGFTQ6=Yes: Change this to No to stop FSUIPC4 polling the GoFlight TQ6 module. It seems that all axes and

buttons on this device are already handled through Windows as a joystick device, so having FSUIPC also scan it gives

dual indications in the Buttons tab in FSUIPC4 options (seen as Joystick 169).

Less used technical options

AutoTuneADF: This controls an option to ‗auto-tune‘ the ADF radio. If this is enabled, when FSUIPC detects no NDB

signal being received it alternates the fractional part of the ADF frequency between .0 and .5 every seven seconds or so.

This allows external cockpits built with only whole-number ADF radio facilities to be used in areas like the U.K. which

have many NDB frequencies ending in .5.

AxisCalibration: This facility deals with inputs to the rudder, aileron and elevator axis offsets, via the IPC offsets. It is

intended for use with hardware drivers which, instead of sending normal axis inputs to FS, control the main flight

surfaces by direct writes to FSUIPC‘s offsets, thus bypassing assignments, calibration, etc. The only such hardware

driver known to me is the one for the Aerosoft GA28R console. In FSUIPC4 this facility still operates for compatibility

with FSUIPC3 and before. However, you are advised now to set this to “No”, and instead use the new facility

„DirectAxesToCalibs‟:

DirectAxesToCalibs: Setting this to ‗Yes‘ makes FSUIPC4 assume that any direct writes to FSUIPC4‘s offsets for

rudder, aileron and elevator are from a hardware driver and are really meant as axis inputs. FSUIPC4 directs the values to

its Joystick Calibrations section, where you should then calibrate the inputs exactly as you would for a normal flight

control. The only hardware known to me which benefits form this is the one for the Aerosoft GA28R console. Do not set

this option if you use any sophisticated panels or external programs with their own autopilots, as it is possible that they

route their control values the same way. FSUIPC4 cannot distinguish the source.

AxisIntercepts can be set to ‗Yes‘ to force the intercepting and forwarding of axis controls by FSUIPC4, even if this

action is not needed for FSUIPC4 calibration (where it will be done automatically in any case). This action will be

needed for some ―fly-by-wire‖ aircraft only.

StartImmediately is not expected ever to be used directly by the user. When it is set to ‗Yes‘ it makes FSUIPC4

initialise the data interface with SimConnect immediately it is started, rather than wait for SimConnect to indicate

―SimStart‖. This is the default for FSX + SP1 or later. In order to avoid the earlier SimConnect problems which occur

when more than one Client initialises at the same time, the setting defaults to ―No‖ on a pre-SP1 FSX installation.

SimConnectStallTime can be used on poorer performing systems, very heavily loaded, to attempt to stop FSUIPC4 re-

initialising the SimConnect interface to FSX when it finds itself starved of information which should be arriving all the

time. This time defaults to one second (1), which should always be adequate for systems which can maintain an FSX

frame rate of 2 fps or more, never dropping to 1 or less. This does not include times when FSX is engaged reloading

scenery or inside Menus and the like, which are not checked.

The range of values that can be set from this parameter is 1 to 9, with 1 being the default.

UseEpsilon is normally omitted altogether. If needed, it can be added, in the [General] section of the INI file, set to

―Yes‖. This will impose change limitations on most variables sent to FSUIPC4 by SimConnect. These restrictions were

in place in FSUIPC4 before version 4.069, but were removed by default when it was determined that the performance

improvement gained was negligible or non-existent.

FiddleMachForPM=Yes is, hopefully, a temporary fix for Project Magenta users who suffer the problem of high speed

descents under MCP control as a result of PM incorrectly setting a Mach speed in the wrong mode. This only affects FSX

because of the odd way FS9 and before work. To enable this fix add this parameter (it won‘t appear in the INI by

default).

By way of explanation, when the PM MCP sets the IAS for the A/P it also sets the Mach value. This would be okay,

except for three things:

1. The Mach value it sets after cruise is ALWAYS the last one it set in cruise, not a correct one related to the IAS and

altitude/temperature/pressure.

2. The Mach is written after the IAS

 9

3. In FS9 and before, the Mach setting did not affect the IAS setting nor vice versa until and unless you switched IAS/Mach

modes. However, in FSX the last-written value applies and is converted to the equivalent IAS/Mach no matter which mode

you are in!

This FSUIPC4.INI parameter simply makes FSUIPC4 discard any MACH writes whilst the PM MCP is in IAS mode.

FiddleAppAltForPM=Yes is another hopefully temporary fix for Project Magenta. It makes FSUIPC4 automatically

replace any altitude written during PM MCP APP mode by zero. It also sets the FSX MCP altitude to zero in PM MCP

APP mode when a negative VS is set, and it does both these things even if Altitude Hold is enabled.

The intention here is to avoid any unwanted climbs when descending on the GlideSlope due to the fact that FSX seems to

be different to FS9 and before in that writing to the FS MCP's altitude register can affect the requested vertical speed

even though FS‘s altitude hold option is not enabled.

AutoGlobalWeather=Yes controls whether FSUIPC4 attempts to change the internal global weather structures in FSX

when applying the assorted weather options. Generally this seems to do no harm left enabled, but whether it really does

any good is not too clear either.

CustomWeatherModify=No stops FSUIPC4 re-writing weather station METARs in an attempt to correct for excessive

wind and temperature layers and also to apply selected user weather filters when ―custom weather‖ mode is enabled—as

when the user selects specific weather settings (i.e. not thematic or downloaded) or when external programs such as ASX

controls the weather.

AutoDeleteAI: this controls a facility to make FSUIPC automatically delete AI aircraft with given call signs (ATC IDs).

The parameter provides a list of call signs, optionally enclosed in " " and separated by commas (,). Up to 16 such names

can be listed. As glider tow planes were the reason for adding this facility, and their call sign appears to always be EC-

527, the line could be:

 AutoDeleteAI=EC-527

Note that, for tow planes, this deletes the AI aircraft, but NOT the tow rope. Apparently you would need to remove that

(Ctrl Y?) in order to get another tow plane called up.

The action of deleting these aircraft is Off initially, by default, but can be set to be On by default by making the first

name in the list "ON", so:

 AutoDeleteAI=ON,EC-527

This might be used on a multiplayer server, where others tow planes are presumably never required. Run-time control of

the state of this option is by use of three new assignable controls, added to FSUIPC's dropdowns for Keys and Buttons.

UseAxisControlsForNRZ=No: This is a facility for the [JoystickCalibration] section(s) of the INI file, not [General].

It is a special option provided to try to cope with some different add-on practices (notably, in this case, the Wilco A320).

Normally, the 4-Throttles, 4-mixtures and 4-Prop pitch calibrations result in an output with either a range which includes

the reverse zone, or, if the "no reverse zone" option is checked, a range from 0 (idle) to 16383 (max). These are sent to

FS using the older "????n_SET" controls (THROTTLE1_SET, etc), since these are the ones providing the reverse zone

below zero.

If you set the [JoystickCalibration] INI parameter UseAxisControlsForNRZ to "Yes", then the NRZ (no reverse zone)

option for all three axis types will use the AXIS_????n_SET controls (e.g. AXIS_THROTTLE1_SET) instead, with a

range of -16363 (idle) to +16383 (Max). This will be Aircraft or Profile-specific if you set it in the appropriate

calibration section of the INI file.

AUTOSAVE: INI-file only options

Some add-on programs produce files when Flights are saved separately from the usual ones in the FSX flights folder, so

that the AutoSave option fails to manage their numbers, deleting older ones when the FLT files are deleted. The types

handled by default are FLT, WX, FSSAVE, PSS, FMC, ABL, RCD, SPB and IPCBIN. For any others, and files in other

folders, you have to manually add some lines to the [AutoSave] section of the FSUIPC4.INI file. As an example, for the

PMDG 747X these would be:

AlsoManage1=PMDG\747400\PanelState*.FLT.sav

AlsoManage2=PMDG\747400\PanelState*.0.rte

AlsoManage3=PMDG\747400\PanelState*.1.rte

 10

The path given in these lines is within the main FSX path. If you have anything installed outside the FSX path you'd need

to give the complete pathname, from the drive (e.g. C:\ ...) onwards (or the computer name for a Network in the usual

form, i.e. \\<name> ...).

Up to nine ―AlsoManage‖ lines can be given, numbered 1 to 9.

Logging facilities

These options can be controlled ‗on the fly‘ from the FSUIPC4 dialogue window (select the Add-Ons menu then

FSUIPC, or ALT, D then F).

FSUIPC4 always produces a text file called FSUIPC4.LOG in the Modules folder. Entries in the log are timed, from the

start of the FS session. The time is in milliseconds and appears on the extreme left of each line.

Please use the logging facilities to check things before reporting problems or omissions in FSUIPC4, and supply an

appropriate log file (or extract) properly zipped up with such reports.

Note that log files can get very large if all the options are turned on. Keep test flights short. You can read log files whilst

flying provided you use a reader which shares access (like recent Notepad programs), or use the ‗NewLogKey‘ described

below to close logs and start new ones.

All Log control parameters go into the [General] section of FSUIPC4.INI. None are included by default.

LogWeather=Yes: Logs weather data. This will log incoming data, set by a weather control program and the actual

weather data constructed by FSUIPC4 in FS terms. Then you get the weather read out by FSUIPC4 and lastly placed

back into the Offsets for applications to read. Incoming weather control data on the Advanced Weather and New Weather

Interfaces is also logged in full.

LogWrites=Yes: Logs the offset ‗writes‘ received from applications, with global offset address and data size, plus all

bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogReads=Yes: Logs the offset ‗reads‘ received from applications, with global offset address and data size, plus all

bytes of data. The offsets shown are the ones used by the application. [Take care: the Log file may get very large!]

LogEvents=Yes: This option logs all FS ―key events‖, other than those from axis controls. This can be very useful to

those seeking to understand the actions of their buttons and keys, or to view the sorts of things some of the more complex

panels do, repeatedly, every second.

LogAxes=Yes: This logs just the axis input events.

LogButtonsKeys=Yes: This logs most Keyboard events (KEYUPs only when programmed), and all button operations.

The logging can get quite long, but it will be very useful when trying to analyse exactly what your complex FSUIPC4

button or key programming is doing.

LogLua=Yes: Enables extra Lua plug-in logging, and causes each running Lua plugin to use its own Log file. These files

are cumulative, though—each time the same plug-in runs it adds to an existing Log file.

LogExtras=Yes: This logs additional technical data about the inner workings of FSUIPC4, the nature of which will vary

from time to time according to needs. There is nothing here that would be of interest to the user, but when investigating

problems users may be asked to enable it so that the logs returned can be more meaningful in solving them. Do not fly

extensively with this option enabled or you will fill up your disk and probably compromise the simulator‘s performance!

Additional ―Extras‖ logging facilities are available if the parameter Debug=Please is incorporated into the INI file. This

changes the Extras logging flag into a numeric value that can be in hexadecimal and may extend to two 32-bit parts

(x.....,x.....). This facility is for use under instruction only.

LogSimC=xxxx,xxxx ... (where each ‗xxxx‘ is either an offset, or a range xxxx-xxxx): whenever the values associated

with offsets listed or included here are read from or written to a SimConnect Variable (―SimVar‖) those values are

logged. The list can request several disparate offsets or ranges—the limit is imposed only by the INI file maximum line

length (255 characters).

NewLogKey, StopLogKey: These allow you to assign keypresses to close the current Log file (if logging was enabled),

and start a new one. The ‗NewLogKey‘ will carry on with the same logging options, whilst the ‗StopLogKey‘ will revert

to default logging (the minimum). Between them these two keys give complete control over the logging. (Note that both

actions are also available in the FSUIPC4 dialogue window).

 11

The current log file is always called FSUIPC4.LOG. The others are named in numerical order FSUIPC4.1.LOG, …

2.LOG, … etc. The keystrokes are defined as in Flight Simulator‘s own controls, and listed below in the Button

Programming section. For example, I use ―Shft+Ctrl+L‖ and ―Shft+Ctrl+O‖ (for ―Log‖ and ―Off‖ respectively) which

would be

 NewLogKey=76,11

 StopLogKey=79,11

Monitor facilities

FSUIPC4 can monitor, on every FS frame, up to four values (or the same values in different formats, if needed), and

display or log them when they change. For each value to be logged you enter or select four things:

Base: which will normally be fixed at ‗IPC‘. The base is the name of the area of data from which the value shown will be taken. All

the variables supported by FSUIPC through the IPC interface are at offsets relative to the IPC base.

Offset: which identifies the position of the value relative to the Base. This is a hexadecimal number, normally in the range 0000 to

FFFF. Some of the non-IPC bases may allow larger offsets. For offsets to standard IPC variables see the Programmers Guide in the

SDK.

Type: this defines the type of variable, so that the formatting in the display will show something meaningful. The types currently

supported are tabulated below.

Type Description C type Type Description C type

S8 Signed 8-bit value, -128 to +127 signed char UIF32 4 byte Integer & Fraction: 16-bit

fraction followed by 16-bit unsigned

integer

Uses an

unsigned int

U8 Unsigned 8-bit value, 0 to 255 unsigned

char, or

BYTE

 SIF64 8 byte Integer & Fraction: 32-bit

fraction followed by 32-bit signed

integer

Uses an

unsigned
then signed

int

S16 Signed 16-bit (2 byte) value short UIF64 8 byte Integer & Fraction: 32-bit

fraction followed by 32-bit unsigned

integer

Uses two

unsigned

ints

U16 Unsigned 16-bit (2-byte) value unsigned

short, or

WORD

 FLT32 32-bit (4-byte) standard floating point

value
Float

S32 Signed 32-bit (4-byte) value int FLT64 64-bit (8-byte) standard floating point

value
Double

U32 Unsigned 32-bit (4-byte) value unsigned int,

or DWORD
 ASCIIZ A string of single-byte characters

terminated by a zero byte. A length an

limited number of these is shown

Char[], or

ASCIIZ

SIF16 2 byte Integer & Fraction: 8-bit

fraction followed by 8-bit signed

integer

Uses a short SA16 16-bit signed Angle in FS format (-180

degrees = max+1)

Uses a short

UIF16 2 byte Integer & Fraction: 8-bit

fraction followed by 8-bit unsigned

integer

Uses an

unsigned

short

 UA16 16-bit unsigned Angle in FS format

(360 degrees = max+1)

Uses

unsigned

short

SIF32 4 byte Integer & Fraction: 16-bit

fraction and 16-bit signed integer

Uses an int SA32 32-bit signed Angle is FS format Uses int

 UA32 32-bit unsigned angle in FS format Uses

unsigned int

Hex: For most numerical values the sensible display will be decimal. However, for the plain fixed point integer values (S8, U8, S16,

U16, S32 and U32) you may want to view them in hexadecimal instead.

Then you have to select how you want the values to be displayed. There are four options, and any or all of these can be selected:

Normal Log File: Changes in the monitored values are listed in the FSUIPC4.LOG for later viewing. Additionally, for any monitored

offset, the offset is also treated as a ―LogSimC‖ offset (see above) automatically so that SimConnect reads/writes are logged.

Debug String: The same messages are sent to a debugger or debugging monitor such as DebugView, for viewing in parallel to the FS

actions. Note that you may have difficulty running a debugger with SafeDisk-protected versions of FS (FS2000 and FS2004).

FS Window: The monitoring is done by using up to 4 lines in the FS message display window. This appears near the top of the screen.

FS Title Bar: The messages replace the FS title altogether. Only one is shown at a time, so this is only useful for monitoring one

value.

 12

If the value requested is not available at any time the result will show ―<invalid>‖. When looking at some Engine or other aircraft

things, this can happen transiently, for instance whilst an aircraft is being loaded.

All the monitoring selections are saved in the FSUIPC4.INI file, in a section called [Monitor].

JoyNames

The INI file section [JoyNames] is fully described in its own chapter in the User Guide.

Profiles

If you opt to use the Profile facilities, to have different button, key, axis and calibration settings for a number of types of

aircraft (rather than specific named aircraft), then FSUIPC4 will create [Profile.<name>] sections in your INI file. These

take the name of the profile you request, for example ―Jets‖, ―Props‖, ―Helos‖, and simply contain a list, in the usual

1=<name>, 2=<name> ... format, of those aircraft names which belong to the particular profile, according to your

assignments. Those aircraft names may be the full names, as when you assign in the FSUIPC4 options dialogue, or can

be shortened or substring names, according to the ―ShortAircraftNameOk‖ parameter already mentioned.

Button Programming

FSUIPC4‘s options dialogue provides a page for programming button in all the main ways. Here we look at how this

programming is encoded in the FSUIPC4.INI file, and how the programming can be extended to provide multiple

keystrokes and controls for a button, mixed if required, and to provide compound (conditional) actions—ones depending

on other buttons, switch settings and even previous keyboard presses. There are even facilities to make Button actions

depend upon values in offsets from the FSUIPC4 IPC interface, which really provides a wealth of possibilities (for that

part you will need to get the FSUIPC4 SDK too, as the offset listings are provided in that package, in the Programmer‘s

Guide).

FSUIPC4 reloads all Button parameters each time the aircraft is changed in Flight Simulator, so you can edit theses and

test them out without having to reload Flight Sim every time.

Before embarking on the programming itself, several global parameters need to be described. These won‘t appear in the

INI file unless you add them, and you only need to add them (in the main [Buttons] section) if you need something other

than the defaults:

InitialButton: This controls a facility to make FSUIPC4 perform one-off actions when FS is first loaded and running

(i.e. actually ready to fly). This is by programming a real or imaginary Button. Simply add the line ―InitialButton=j,b‖ to

the [Buttons] section. The values of j (0–255) and b (0–31) can specify a real joystick and button, or a non-existent one, it

doesn‘t matter. Real ones can have an action assigned on-line, in the Buttons option page, but multiple actions for any

button, real or not, can be accomplished by editing the INI file as described here.

IgnoreThese: This can be used to list a number of buttons which are to be ignored by FSUIPC4 in the Buttons &

Switches tab. This is to deal with faulty button signals which are repeating without control and thus preventing the others

from being registered on the screen ready to program. The parameter takes this form:

IgnoreThese= j.b, j.b, ...

listing the joystick number (j) and button number (b) of each button to be ignored. To make it easy, you can edit the INI

file whilst in the Button assignments dialogue and simply press ―reload all buttons‖ to activate the changes.

Note that the action of ignoring buttons only applies to those numbered 0–31 on each possible joystick (not any ―POV‖

hats), and they are only ignored in the dialogue—if they are already assigned the assignment will still be effective.

EliminateTransients: This can be added, and set to ‗Yes‘, to eliminate short (transient) button press indications. This is

intended to help deal with some devices which create occasional spurious button press signals. It operates only with

locally-connected joysticks (but not EPIC or GoFlight devices).

Note that enabling this option may mean you have to consciously press buttons for slightly longer. It depends on the

PollInterval (below). A ―transient‖ button indication is one which only exists for one poll, so a real press would have to

last up to 50 mSecs (twice the default poll interval) to be sure of being seen (more, allowing for variations in the polling

due to processor/FS activity). You may find you need to adjust the PollInterval.

PollEpicButtons=Yes: Set this to No if you experience any difficulty getting FSUIPC4 to operate correctly on a system

with an EPIC installed but which you do not want to program via FSUIPC4‘s ―Buttons‖ page.

 13

ButtonRepeat=20,10: The first number here controls the button repeat rate, when repeating is enabled for a specific

button. The range is 1 to 100 and is the number of repeats per second. Note that the higher rates may not actually be

achievable. If you want no limit placed, allowing the repeats to go as fast as they can under each circumstance, set this

parameter to 0. This can be very fast, so beware!

Note that it is unlikely that this rate will be exactly maintained as it is subject to FS performance variations, depending on

the action being repeated, but it acts as a good target control value.

The second number gives an initial delay, before repetitions begin. This is in terms of how many potential repetitions to

miss, so with 20 repeats per second, 10 would give a delay of half a second. This allows the same button to operate to

increment/decrement a value just once, or, by holding the button down, repeat until released.

A value of 0 for the initial delay value means there will be no delay before the repeats start -- this is how FSUIPC has

been until the delay facility was added.

PollInterval=25: This parameter tells FSUIPC4 how often to read (―poll‖) the joystick buttons. The time is in

milliseconds, and the default, as shown, is 25 (40 times a second).

A polling rate of 0 will stop FSUIPC4 looking at buttons altogether, and in fact this will remove the Buttons & Switches

tab from the FSUIPC4 options. This may come in useful for checking whether a rogue joystick driver is causing

problems.

A polling rate of 40 per second is more than adequate for all normal button programming. It is only when you come to

the more advanced uses that you may want to change this. Rotary switches, for instance, may give pulses so fast that

some are missed at such a rate.

Any value from 1 millisecond upwards can be specified, but those from 50 upwards result in a specific number of ―ticks‖

(55 mSecs) being used. i.e. 40–82 actually result in 55 (1 tick), 83–138 in 2 ticks, and so on. Ticks are also approximate,

in that they depend on the other activities and loading upon FS.

Values 1–59 milliseconds are actually handled by a separate thread in FSUIPC4 and give more accurate results, but note

that polling the joysticks too frequently may damage FS‘s performance, and may even make its response to joystick

controls more precarious. No truly adverse effects have been noticed during testing, but it is as well to be warned. If you

think you need faster button polling, try values in the range 10–25, and make sure that FS is still performing well each

time.

Note that PFCFSX‘s ―emulated‖ joysticks (those with numbers 16 upwards) are polled four times more frequently in any

case—this is done because there is no overhead in doing so—there are no calls to Windows but merely some data

inspections. GoFlight buttons (joystick numbers even higher) aren‘t polled at all—FSUIPC4 receives a call from the

GoFlight driver interface (GFDev.DLL) whenever an event occurs.

FORMAT OF BUTTON DEFINITIONS

The button programming is saved in sections in the INI file. For globally operative buttons this is called [Buttons]. For

aircraft-specific buttons it is [Buttons.<aircraft name>]. Up to 2048 separate entries defining button actions can be

included in each section, normally numbered sequentially from 0, provided that the total of the definitions in the Global

section and the largest aircraft-specific section is not greater than 2048.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section

heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the ‗Yes‘

option, FSUIPC4 will automatically select the section with the longest match. The ordering of sections in the INI file is

not relevant. However, with the ‗Substring‘ option it will select the first section with a substring match – there‘s no

concept of ―longest match‖ in this case.

The basic format of each entry in the Buttons section is as follows:

For keypresses: <Entry number> = <Action><Joy#>,<Btn#>,K<key>,<shifts>

For controls: <Entry number> = <Action><Joy#>,<Btn#>,C<control>,<parameter>

For macros (see the separate section on macros):

 <Entry number> = <Action><Joy#>,<Btn#>,M<file#>:<ref#>,<parameter>

The format of the parameters becomes more complex for conditional actions, so they will be described later.

 14

The <Entry number> is not material most of the time—except in sequences for single button presses/releases. It is just a

sequence number from 0–2047 (but limited to a total of 2048 entries for the general section plus any one Aircraft-specific

section).

Each entry must have a unique entry number, and the actual order is only important when multiple actions are defined for

the same button. FSUIPC4 will retain the numbering, and hence the order which the number (not the line position)

defines.

You can add comments following a semicolon (;) at the end of the line, and these will be retained. You can also insert

lines containing only comments, but they need an <Entry number> too, otherwise they may not retain their relative

position. Comments can contain up to 63 characters—longer ones will be truncated if and when the [Buttons] section is

re-written by FSUIPC4.

<Action> is a single letter denoting the action being defined:

P Pulse the key press or control: i.e. do not hold the keys down whilst the button is held down.

This is always the case for controls, and should always be the case for any key presses

involving ALT key usage, because once the FS Menu is entered FSUIPC4 cannot supply

further changes like key releases.

H Hold the specified keys down until the button is released. (This doesn‘t apply to Controls and

will be treated like P in their case). Do not use this with key presses involving ALT, for the

reason just given.

R Repeat the key press or control whilst the button is kept held down. The repeat rate is

approximately 6 per second and is not adjustable. Do not use this with key presses involving

ALT, for the reason already given.

U Pulse the key press or control when the button is released.

Any button can have a U entry as well as a P, H, or R entry. Provided the button only has one P, H or R, and/or

one U entry, and that when it does have two they are either both key presses or both controls, then the button

programming can be handled entirely in FSUIPC4‘s Buttons option page.

The <Joy#> identifies the joystick number (0–15 for normal joysticks, 16 upwards for PFC, GoFlight or other

future ‗emulated‘ joysticks) as displayed by FSUIPC4, and the <Btn#> identifies the specific button (0–39),

again as in FSUIPC4‘s display. Of these buttons 0–31 are regular buttons and 32–39 are the 8 possible POV

view angles, starting forward and going clockwise every 45 degrees. (There are no emulated POVs so for

joysticks 16 and upwards the buttons numbers are always in the 0–31 range).

Note that the Joystick numbers 0–15 may be replaced be an assigned letter (A–Z, omitting I and O) if the

JoyNames facility is being used to assign joysticks indirectly, in case their real ID numbers change.

When buttons on WideFS clients are programmed, the Joystick number also includes a Client PC number—

1000 for client 1, 2000 for client 2 and so on. The client numbering is actually handled by WideServer, which

keeps a record of Client PC names and assigns them numbers in the WideServer.ini file. You only need to

worry about that when changing PCs or renaming them.

For key presses, the <key> value following the letter ‗K‘ is the virtual key code for the key to be pressed.

Here‘s a list for convenience (but note that not all of these will be usable):

0 Null (+ Alt, Shift etc alone)

(Can only be used to
press these, not detect
them!)

 8 Backspace
 12 NumPad 5 (NumLock Off)

13 Enter
16 Shift (needs shift value 9)
17 Control (needs shift value

10)

18 Menu (needs shift value 72)

19 Pause
20 CapsLock
27 Escape

 32 Space bar
 33 Page Up

 34 Page Down
 35 End
 36 Home
 37 Left arrow
 38 Up arrow
 39 Right arrow

40 Down arrow
44 PrintScreen

 45 Insert
 46 Delete
 48 0 on main keyboard
 49 1 on main keyboard
 50 2 on main keyboard
 51 3 on main keyboard
 52 4 on main keyboard
 53 5 on main keyboard

 54 6 on main keyboard
 55 7 on main keyboard
 56 8 on main keyboard
 57 9 on main keyboard
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L

 15

 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 96 NumPad 0 (NumLock ON)
 97 NumPad 1 (NumLock ON)
 98 NumPad 2 (NumLock ON)
 99 NumPad 3 (NumLock ON)
 100 NumPad 4 (NumLock ON)
 101 NumPad 5 (NumLock ON)
 102 NumPad 6 (NumLock ON)
 103 NumPad 7 (NumLock ON)
 104 NumPad 8 (NumLock ON)

 105 NumPad 9 (NumLock ON)
 106 NumPad *
 107 NumPad +
 109 NumPad -
 110 NumPad .
 111 NumPad /
 112 F1
 113 F2
 114 F3
 115 F4
 116 F5
 117 F6
 118 F7
 119 F8
 120 F9
 121 F10
 122 F11
 123 F12
 124 F13
 125 F14
 126 F15
 127 F16
 128 F17

 129 F18
 130 F19
 131 F20
 132 F21
 133 F22
 134 F23
 135 NumPad Enter (or F24?)
 144 NumLock
 145 ScrollLock
 186 ; : Key*
 187 = + Key*
 188 , < Key*
 189 - _ Key*
 190 . > Key*
 191 / ? Key*
 192 ' @ Key*
 219 [{ Key*
 220 \ | Key*
 221] } Key*
 222 # ~ Key*
 223 ` ¬ ¦ Key*

* These keys will vary from keyboard to keyboard. The graphics indicated are those shown on my UK keyboard. It is
possible that keys in the same relative position on the keyboard will respond similarly, so here is a positional
description for those of you without UK keyboards. This list is in left-to-right, top down order, scanning the keyboard:

 223 ` ¬ ¦ is top left, just left of the main keyboard 1 key
 189 - _ is also in the top row, just to the right of the 0 key
 187 = + is to the right of 189
 219 [{ is in the 2nd row down, to the right of the alpha keys.
 221]} is to the right of 219
 186 ; : is in the 3rd row down, to the right of the alpha keys.
 192 ' @ is to the right of 186
 222 # ~ is to the right of 192 (tucked in with the Enter key)
 220 \ | is in the 4th row down, to the left of all the alpha keys
 188 , < is also in the 4th row down, to the right of the alpha keys
 190 . > is to the right of 188
 191 / ? is to the right of 190

The <shifts> value is a combination (add them) of the following values, as needed:

1 Shift

2 Control

4 Tab

8 Normal (add this in anyway)

16 Alt (take care with this one—it invokes the Menu)

32 Windows key (left or right)

64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for key programming. Apologies

for this, which was a design oversight now too late to change]

If only ―normal‖ is needed, the whole parameter and the preceding comma can be omitted. Usual values are:

 9 for shift+ …

 10 for control+ …

 11 for shift+control+ …

For FS controls the <control> is a number from 65536 upwards, denoting the specific FS control number. Lists of

these can be found in my various FS controls documents. In the FSUIPC4 Buttons page the controls are shown by

name normally, but if you want to try a control which has no name but might do something useful for you, enter it

here, in the INI file. In the Buttons page FSUIPC4 will show this by number instead of name.

 16

The <parameter> for a control is optional – just omit this along with the preceding comma for most toggle/button

type controls. A parameter value of 0 will be assumed anyway.

Either or both of the <control> and <parameter> values can be provided in hexadecimal, preceded by an ‗x‘

character.

As well as the FS controls, a number of additional FSUIPC4 controls are available. These range from 1000 to 3000,

and also values ‗xcc00zzzz‘ (in hexadecimal) which encode the FSUIPC4 ―Offset‖ controls. See the list below the

discussion on ‗Keys‘ for full details.

SEQUENCES, COMBINATIONS, and MIXTURES

The Buttons page in the FSUIPC4 options is deliberately kept rather simple, hiding some of the programming

possibilities. By editing the INI file you can do more:

 Hold one key down whilst pressing another

 Press and release a sequence of keys

 Mix key presses and FS controls in one button operation

 Make button actions conditional on the state of other buttons (see ‗Compound‘ buttons, below)

 Make button actions conditional on values in FSUIPC4 offsets (see ‗Adding offset conditions‘, below)

The first three are simply done by defining the actions in separate entries, each referring to the same joystick/button

number. I‘d recommend you first use the Buttons page to get the initial action programmed (this making sure you

have the right button number), then close FS and edit the entries already made in the INI file. The only important

thing is to number the entries in sequence – preferably, but not necessarily, consecutively.

Examples:

 16=H1,2,K69,8

 17=H1,2,K49,8

Presses and holds the ‗E‘ key then presses and holds the ‗1‘ key, so both are pressed together. They are both released

(in the same order) when the button is released.

 18=P1,3,K69,8

 19=P1,3,K49,8

 20=P1,3,K50,8

 21=P1,3,K51,8

 22=P1,3,K52,8

Presses and releases ‗E‘, then ‗1‘, ‗2‘, ‗3‘, and ‗4‘ in rapid succession, selecting all Engines.

 23=P2,3,K76,24

24=P2,3,K65,8

25=P2,3,K69,8

Presses and releases ALT+L then A then E, is very rapid succession! FSUIPC leaves no delays at all between actions

when the ALT key has been used. Otherwise, as soon as it allows the processing of the keys to begin, the ALT key

combination will bring up the menu item and (in this case) dialogue, and FSUIPC will not be running and will

therefore not be able to provide the key releases. Horrible mix-ups may then ensue! <G>

This last example is a real one I am actually using. The ALT+L gets the Lago menu, the ‗A‘ selects FSAssist, and the

‗E‘ selects the Pushback with Engine Start. This puts you in the pushback dialogue, but then you are into using the

mouse, I‘m afraid. FSUIPC can help no more.

COMPOUND BUTTON CONDITIONS

Facilities are included to allow you to specify actions for one button which are dependent on the state of another

button (or more likely, switch). This by using what I call ―Compound‖ button programming—though it could equally

be ―Conditional‖ or ―Co-operative‖. Anyhow, I use the letter C in the definitions, as follows:

n=CP(+j2,b2)j,b,

n=CU(+j2,b2)j,b, ...

n=CP(–j2,b2)j,b, ...

n=CU(–j2,b2)j,b, ...

 17

Here the ‗C‘ denotes compound button checking, whilst P = pulse on pressing, U = pulse on releasing, as before.

You can also use CR in place of CP for a repeating action—the repeats continue whilst all the conditions are true.

There is no facility for the Hold action with the compound facilities.

Inside the parentheses are details of the secondary button, which must be in a certain condition for the current button

to operate:

(+j2,b2) means that button b2 on joystick j2 must be pressed ("on") for the current button action (for j,b) to

be obeyed.

(–j2,b2) means that button b2 on joystick j2 must be released ("off") for the current button action (for j,b) to

be obeyed.

The j,b, ... part is the usual button parameter, for the action of the ―current‖ button which is button b on joystick j.

You can have one condition, as shown above, or two, or more (up to 16 in fact), like this:

 n=CP(+j2,b2)(+j3,b3)j,b,

where, now, both the parenthesised conditions must be met for the ‗j,b‘ button action to result in the defined event.

The conditions can be made to apply not to the current state of a button, but to the state of a ‗flag‘ that is set and

cleared by a button (or even a keypress). For every possible ―normal‖ button (16 joysticks x 32 buttons = 512

buttons) FSUIPC4 maintains a ―Flag‖ (F). Each time any button is pressed (goes from off to on) FSUIPC4 toggles its

flag. This makes the buttons flag a sort of ―latching‖ switch. You can test it in any parenthesised condition by

preceding the condition by F, thus:

 N=CP(F+j2,b2) …

This says the rest of this parameter is obeyed if the Flag associated with j2,b2 is set. A condition (F–j2,b2) tests for

the Flag being clear. Note that the actual current state of the button j2,b2 is not relevant. All that matters is whether it

last left its Flag set or clear.

Any of the conditions in a multiple-conditioned setting may be on Flags.

These Button Flags can also be set, cleared and toggled by three special FS controls, Button Flag Set (C1003),

Button Flag Clear (C1004), and Button Flag Toggle (C1005). In all three cases the Joystick (0–15 only) and

Button (0–31) referenced is given in the Parameter, by a value calculated as:

 256 * J + B (for example, Joystick 15, Button 31 would be 3871).

These three controls are listed in the FSUIPC4 options drop downs for assignment in both the Buttons and Keys

pages, so you can program them there, or here in the INI file. With these themselves as controls resulting for

conditional button actions, you can influence conditions for button actions in a whole multitude of ways.

One point to note: since you can use the keyboard or other compound button actions to set, clear or toggle the flags,

the actual button for which the Flag is assigned does not actually need to exist!

Okay. Now what does this really mean? Some simpler examples will suffice here. I leave it to the more imaginative

amongst you to come up with some really complex applications! <G>

First, it means that you can assign multiple uses to any number of buttons by making them conditional on a number

of others. For example, a 12-position latching rotary switch could be wired to operate buttons 1 to 12 on joystick 1.

Then for any other button I can program 12 different actions. For example, button 0,3 could have twelve different

actions assigned, like this:

1=CP(+1,1)0,3, ...

2=CP(+1,2)0,3, ...

3=CP(+1,3)0,3, ...

...

12=CP(+1,12)0,3, ...

and so on. For example, you may have a set of assignments for ground operations, a set for take-off, a set for climb, a

set for cruise, and so on.

Second, to economise sensibly on the use of buttons, where you really need a toggle you can make any button toggle

between two actions by using a flag as a condition. For example, suppose your button is Joy 11, button 3, and a spare

flag (a button on joysticks 0-15 not otherwise used) is 15, 2. Program your button with three lines in FSUIPC (the

 18

numbers on the left need to be sequential with whatever's there already, but I'll assume you have no others so will

start with 1):

1=P11,3,C1005,3842

This says execute Control 1005 whenever your button is pressed. Control 1005 is "Button Flag Toggle". The

parameter '3842' identifies the Flag: 256 x joystick 15 + button 2. So, this flag will now alternate between being set

and clear each time you press the button.

2=CP(F+15,2)11,3, ...

This tells FSUIPC what to do if the button is pressed AND the flag is set. Replace the ... part by the Control number

and parameter for one of the actions you need.

3=CP(F-15,2)11,3, ...

Similarly, this tells FSUIPC what to do when the button is pressed and the flag is not set.

Third, you can now program those two-phase type rotary switches, the ones where turning the spindle one way gives

pulses on two lines phase shifted one way, and turning the spindle the other way gives the opposite phase

relationship.

Say the inputs from the rotary are on Joystick 1, Buttons 1 and 2. When B1 is ON and B2 goes from off to on, then

the spindle has turned one way. When B1 in ON and B2 goes from on to off, the spindle has turned the other. That is

the simplest example:

1=CP(+1,1)1,2, ... turn direction 1 action

2=CU(+1,1)1,2, ... turn direction 2 action

You can also have double speed action, operating on every off to on and on to off change of B2. Just add two more

conditions:

3=CP(–1,1)1,2, ... turn direction 2 action (B2 goes off to on when B1 is off)

4=CU(–1,1)1,2, ... turn direction 1 action (B2 goes on to off when B1 is off).

Since the whole thing is completely symmetric (there is no reason why B1 should control B2, it could also be the

other way around), you can actually program it to act on ALL edges of both buttons, by adding another 4 conditions:

5=CP(+1,2)1,1, ... turn direction 2 action (B1 goes off to on when B2 is on)

6=CU(+1,2)1,1, ... turn direction 1 action (B1 goes on to off when B2 is on)

7=CP(–1,2)1,1, ... turn direction 1 action (B1 goes off to on when B2 is off)

8=CU(–1,2)1,1, ... turn direction 2 action (B1 goes on to off when B2 is off)

So, you can effectively choose how many pulses you will get for a given turning rate. As you can see, you can get

rates of 1x, 2x or 4x—even 3x if you do one part for only half the changes! Note that for reliability at higher speeds

you may need to reduce the PollInterval.

By the way, it is with some of these rotary switches where the double condition facility can come in very useful. If

you have a single rotary of this type with also a push button action available, you can program it to adjust both the

units and fractions of, say, a radio receiver. Just use the Flag associated with the button action to choose between one

pair of actions or another, thus, supposing 1,3 to be the button:

1=CP(F+1,3)(+1,1)1,2, ... increment fraction

2=CU(F+1,3)(+1,1)1,2, ... decrement fraction

3=CP(F–1,3)(+1,1)1,2, ... increment integer

4=CU(F–1,3)(+1,1)1,2, ... decrement integer

One last thing. Using several rotaries of this type (that is, with the two signals in different phase relationships to

indicate direction of turning), if they are of the type that have both signals ‗off‘ in the detent you can save button

connections by making one of them (on each one) common. If you do this you can only turn one of them at a time,

but this is probably a worthwhile restriction if you are getting short of button connections.

ADDING OFFSET CONDITIONS

As well as all the above (and below, for Keys) any or all entries in all Buttons and Keys sections of FSUIPC4.INI

can each contain a single condition based on the value of bits, bytes, words or double words in the FSUIPC4 IPC

 19

interface. These values are addressed by an ―offset‖ value in hexadecimal and include just about anything you can

think of about what is happening in FS.

Just taking some examples, you can make conditions based on:

 Whether the aircraft is airborne or on the ground

 Whether the engines are running

 Whether one or more of specific lights are switched on or off

 Whether the gear is up or down

 Even whether there are valid radio signals for NAV1, NAV2, GS, ILS LOC

… and so on. The possibilities are endless!

To make good use of this you will need the Programmer‘s Guide, which lists all of the offsets. This document is in

the FSUIPC4 SDK. You‘ll find a lot of data in there that you cannot make use of—the conditions here deal with bits

or values in 8-bit bytes, 126-bit words and 32-bit ―double words‖. You cannot make use of string values, tables ot

floating point values.

You add an offset condition to any Key or Button parameter line in FSUIPC4.INI as follows:

<sequence number>=<offset condition> <usual parameter>

The space between the new condition and the normal parameter is essential.

A simple example will help. Take this button push parameter, designed to toggle the landing gear when the button is

pushed:

 1=P1,0,C65570,0

By adding an offset condition we can stop this doing anything when the aircraft is on the ground:

 1=W0366=0 P1,0,C65570,0

The inserted part, ―W0366=0‖ specify that the Word (16-bit or 2-byte value) at offset 0366 must be zero for this line

to be obeyed. Offset 0366 contains 0 when the aircraft is airborne, 1 when it is on the ground.

The format of the condition is:

 <size><offset><mask><condition>

where

<size> is B for Byte, W for Word or D for Double Word,

<offset> is the FSUIPC offset, an hexadecimal value between 0000 and FFFF,

<mask> is optional, and if given selects one of more bits: specify as &x where ‗x‘ is the 8, 16 or 32-

bit mask in hexadecimal. The value in the offset is ―ANDed‖ with this mask before being

used,

<condition> is one of:

 =value for equality

 !value for inequality

 <value for less than

 >value for greater than

 and the ―value‖ here is decimal unless preceded by an x (or X) in which case it is

hexadecimal like the offset and mask. FSUIPC will output hexadecimal where a mask is

used, otherwise decimal. All values are treated as unsigned.

The optional mask facility is useful for testing specific bits, as in the case of the light switches in offset 0D0C or the

radio reception details in offset 3300. For example, the offset condition:

 W3300&0040!0

is TRUE when the currently tuned NAV1 is for an ILS.

The <condition> part is optional too, defaulting to !0 when omitted, so this last example could be abbreviated to:

 20

 W3300&0040

For Project Magenta users who sometimes use the default FS autopilot instead one very useful condition is simply:

 W0500

Offset 0500 is non-zero when PM‘s MCP is running, zero otherwise, so you can program buttons and keys to operate

PM when it is running, but FS otherwise.

Finally, for clever switching you may want to consider using one button to adjust an FSUIPC4 offset value which

then, via offset conditions, selects between a number of alternative button and/or key assignments. To assist in this,

offsets 66C0 to 66FF are reserved purely for you to do with as you like. The offset cyclic increment/decrement

controls allow, say, a byte value in offset 66C0 to cycle throgh a number of vlues, then each value selects particular

actions for defined keys or buttons. The entries in Buttons or Keys might look like this:

31=P174,10,Cx510066C0,x00030001

32=B66C0=0 P117,6,C1030,0

33=B66C0=1 P117,6,C1034,0

34=B66C0=2 P117,6,C1038,0

35=B66C0=3 P117,6,C1042,0

Here the value in the Byte at offset 66C0 is cycled from 0–3, and back to 0, by button 174,10, and this value, in turn,

selects what happens with button 117,6.

These are real examples related to programming of a Go-Flight GF45 unit for different frequency adjustments. Many

fuller examples of all this will appear in the documentation for my GFdisplay program, due shortly. GFdisplay brings

my support for GF devices to a completion with display handling to complement the button programming in

FSUIPC4.

FOR FURTHER STUDY AND BETTER EXAMPLES

Additional interesting and useful examples of button programming are provided in an Appendix to this current

document. That Appendix was graciously contributed by an enthusiastic FSUIPC user, to whom I am most grateful.

 21

ERRORS IN BUTTON PARAMETERS

When the [Buttons] sections are read (or re-read via the ―Reload‖ button in the FSUIPC4 Buttons page), the lines are

thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error

message is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press ―Reload‖ again to re-check

it. You don‘t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you.

If it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‗&mask‘ part has no hexadecimal mask

4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)

6 Offset condition: comparison value X for hex, not followed by hex value

7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)

8 Offset condition: no decimal or Xhex value after =, !, < or >.

9 Button operation not specified as H, P, R, U or C

10 Conditional button operation, no P, R or U after the C

11 Too many (…) button conditions

12 Condition joystick number too big

13 Button number omitted in condition (the ,b in (j,b))

14 No matching) found for (condition

15 Button number cannot be > 31 in condition

16 Main button joystick number is too big

17 Main button number is greater than 39

18 Comma (,) missing after main button number

19 The C.r Kor M needed for Control, Key or Macro is missing

20 Unknown formatting, syntax unintelligible

 22

Keyboard Programming

FSUIPC4‘s options dialogue provides a page for programming keypresses to assign specific single FS controls. Here

we look at how this programming is encoded in the FSUIPC4.INI file, and how the programming can be extended to

provide multiple controls for a single keystroke combination.

FORMAT OF KEY DEFINITIONS

The key programming is saved in sections in the INI file. For globally operative keys this is called [Keys]. For

aircraft-specific buttons it is [Keys.<aircraft name>]. Up to 1024 separate entries defining key actions can be

included in each section, normally numbered sequentially from 0, provided that the total of the definitions in the

Global section and the largest aircraft-specific section is not greater than 1024.

As with the Button parameters, Key press entries are reloaded each time you change aircraft in Flight Sim, so you

can make changes in the INI file and test them without reloading FS.

If the [General] parameter ShortAircraftNameOk is set to Yes or Substring, the <aircraft name> part of the section

heading can be abbreviated (manually, by editing the INI file) so that it applies to more than one aircraft. With the

‗Yes‘ option, FSUIPC4 will automatically select the section with the longest match. The ordering of sections in the

INI file is not relevant. However, with the ‗Substring‘ option it will select the first section with a substring match –

there‘s no concept of ―longest match‖ in this case.

The format of each entry in the Keys section is as follows:

n=key,shifts,control,parameter

for a key press action only, or

n=key,shifts,control1,parameter1,control2,parameter2

for a key with press (1) and release (2) actions.

Here n can run from 0 to 1023 (i.e. maximum 1024 different keystroke actions can be added),

key virtual keycode, as in the FS CFG file (see list above, in the section about Buttons).

Note: If the key press automatic repeats are to be ignored, this code is preceded by the letter ‗N‘.

shifts 8 normal

+1 shift

+2 control

+4 alt (not really very useful)

+16 tab (an added "shift" to give more combinations)

+32 Windows key (left or right)

+64 Menu key (the application key, to the right of the right Windows key)

[Note that the Tab and Alt keys are denoted by opposite bits here than when used for

button programming. Apologies for this, which was a design oversight now too late to

change]

control This is normally an FS control number (as in my lists), or a special FSUIPC4 number for

additional controls. It can be in decimal, or, preceded by ‗x‘ in hexadecimal. The

additional FSUIPC4 controls range from 1000 to 3000, and also values xcc00zzzz in

hexadecimal which encode the FSUIPC ―Offset‖ controls. See list below for full details.

 Alternatively, it can be a Macro reference, in which case it takes the form:

 M<file#>:<ref#>

 For example M3:4 would refer to macro file 3, macro number 4 in that file. Please see the

section on macros for more details.

 It can also be a Lua plug-in reference:

 L<file#>:<action>

 Where the File number refers to the [LuaFiles] list in the INI, and the action is one of

these letters:

 R=Run, K=Kill, S=Set, C=Clear, T=Toggle, D=Debug

 23

parameter value to go with control, for "SET" types and some special FSUIPC controls. This also is

normally in decimal, but can be in hexadecimal preceded by ‗x‘.

You can do all of this programming directly in the FSUIPC4 ―Keys‖ page whilst in FS. In fact it is better to do it

there, so you can test it out directly. Note that some of the listed FS controls either do not work, or do not do as you

might suppose! And some seem to be mixed up—for instance the ―Zoom Out‖ and ―Zoom In‖ controls appear to be

switched, even though the Fine variants of these are okay.

There are two reasons you may want to edit the details in the INI file. The first is to make a single button press

operate more than one control. You can specify such actions here, merely by adding the appropriate parameter lines.

The controls will be sent in the order of the parameter entries (i.e. the ‗n‘ in ―n= …‖). You can view all these, and

delete them, in the Keys page on-line, but you cannot edit any other than the first such assignment for that key press.

The second reason is to add FSUIPC4 offset conditions. The facilities for making Button presses conditional upon

assorted FS internals all apply to Key programming too, and the format and other details are the same as for Buttons.

Please refer to the section above entitled ―adding Offset Conditions‖.

ERRORS IN KEY PARAMETERS

When the [Keys] sections are read (or re-read via the ―Reload‖ button in the FSUIPC4 Keys page), the lines are

thoroughly checked. Any that are syntactically wrong are ignored. However, where a line is ignored, an error

message is appended in the form:

… << ERROR n …

The error numbers possible here are listed below. You can then correct the line and press ―Reload‖ again to re-check

it. You don‘t have to erase the << ERROR … additions. If the line is now okay, that message will be erased for you.

If it is still in error a new error number may appear.

The errors are:

1 Offset condition: no hexadecimal offset following the size (B, W or D)

2 Offset condition: the offset is too big (more than 4 hex digits)

3 Offset condition: the ‗&mask‘ part has no hexadecimal mask
4 Offset condition: the mask is too big (more than 8 hex digits)

5 Offset condition: condition not recognised (not =, !, <, > or space representing !0)

6 Offset condition: comparison value X for hex, not followed by hex value
7 Offset condition: comparison value X for hex, too big (more than 8 hex digits)

8 Offset condition: no decimal or Xhex value after =, !, < or >.

20 Unknown formatting, syntax unintelligible
21 Virtual key number not in range 1–255

22 No comma (,) after key number

23 No comma (,) after shift code value
24 Bad control value

Additional “FS” Controls added by FSUIPC4

All the true FS controls are represented by numbers above 65536. They are listed in my FS-version specific

documents called ―FSxxxx Controls …‖. FSUIPC has augmented these with its own set, programmable for both

Button and Keys, and these utilise lower numbers, currently in the 1000–3000 range. These are:

1001 PTT on (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)

1002 PTT off (for Squawkbox 3, Roger Wilco or AVC Advanced Voice Client)

1003 Set button flag (param = 256*joy + btn or JjBb)

1004 Clear button flag (param = 256*joy + btn or JjBb)

1005 Toggle button flag (param = 256*joy + btn or JjBb)

1006 KeySend to WideClients (param = KeySend number, 1–255)

1007 Autobrake Set (param=0 for RTO, 1=off, 2-5 for 1,2,3,Max)

1008 Traffic Density Set (param = 0–100 %)

1009 Traffic Density Toggle (param = 0–100 %)

1010 Spoiler inc (by 512 or amount set in SpoilerIncrement= INI parameter

1011 Spoiler dec (by 512 or amount set in SpoilerIncrement= INI parameter

1012 ---

1013 ---

1014 ---

1015 ---

 24

1016 Ap Alt Var Dec Fast (–1000)

1017 Ap Alt Var Inc Fast (+1000)

1018 Ap Mach Var Dec Fast (–.10)

1019 Ap Mach Var Inc Fast (+.10)

1020 Ap Spd Var Dec Fast (–10)

1021 Ap Spd Var Inc Fast (+10)

1022 Ap Vs Var Dec Fast (–1000)

1023 Ap Vs Var Inc Fast (+1000)

1024 Heading Bug Dec Fast (–10)

1025 Heading Bug Inc Fast (+10)

1026 Vor1 Obi Dec Fast (–10)

1027 Vor1 Obi Inc Fast (+10)

1028 Vor2 Obi Dec Fast (–10)

1029 Vor2 Obi Inc Fast (+10)

1030 Com1 use whole inc

1031 Com1 use whole dec

1032 Com1 use frac inc

1033 Com1 use frac dec

1034 Com2 use whole inc

1035 Com2 use whole dec

1036 Com2 use frac inc

1037 Com2 use frac dec

1038 Nav1 use whole inc

1039 Nav1 use whole dec

1040 Nav1 use frac inc

1041 Nav1 use frac dec

1042 Nav2 use whole inc

1043 Nav2 use whole dec

1044 Nav2 use frac inc

1045 Nav2 use frac dec

1046 Adf1 use whole inc

1047 Adf1 use whole dec

1048 Adf1 use frac inc

1049 Adf1 use frac dec

1050 Adf2 use whole inc

1051 Adf2 use whole dec

1052 Adf2 use frac inc

1053 Adf2 use frac dec

1054 Xpndr low NN dec

1055 Xpndr low NN inc

1056 Xpndr high NN dec

1057 Xpndr high NN inc

1058 Freeze pos on

1059 Freeze pos off

1060 Freeze pos toggle

1061 Engine 1 Autostart

1062 Engine 2 Autostart

1063 Engine 3 Autostart

1064 Engine 4 Autostart

1065 Throttles off

1066 Throttles on

1067 Throttles toggle

1068 PVT voice transmit on (for Squawkbox 3.0.4 or later)

1069 PVT voice transmit off (for Squawkbox 3.0.4 or later)

1070 Key Press and Release (param is Keycode + 256*Shift code, or JsBk)

1071 Key Press/Hold (param is Keycode + 256*Shift code, or JsBk)

1072 Key Release (param is Keycode + 256*Shift code, or JsBk)

1073 FSUIPC4 display window toggle

1074 Airline traffic density set

1075 GA traffic density set

1076 Shipping traffic density set

1077 Cloud cover density set

1078 Simple/complex clouds set

1079 Traffic zapper

1080 Wheel trim toggle (for mousewheel trim adjusting)

1081 Wheel trim faster

1082 Wheel trim slower

 25

1083 Wheel trim speed toggle

1084 Lua Kill All

1085 Traffic Zapall

1086 FollowMe please (i.e. request) (needs FollowMe 2)

1087 FollowMe cancel (needs FollowMe 2)

1088 FollowMe continue (needs FollowMe 2)

1089 AutoDeleteAI toggle

1090 AutoDeleteAI on

1091 AutoDeleteAI off

1092 Re-SimConnect (re-initialises SimConnect interface)

 1093 Efis ND scale inc (default B738 and A321)

 1094 Efis ND scale dec (default B738 and A321)

 1095 Efis ND mode inc (default B738 and A321)

 1096 Efis ND mode dec (default B738 and A321)

 1097 Efis ND map item inc (default B738 and A321)

 1098 Efis ND map item dec (default B738 and A321)

 1099 Efis VORADF1 inc (default B738 and A321)

 1100 Efis VORADF1 dec (default B738 and A321)

 1101 Efis VORADF2 inc (default B738 and A321)

 1102 Efis VORADF2 dec (default B738 and A321)

 1103 Efis 738 ND centre (default B738)

 1104 Efis 738 ND arc (default B738)

 1105 Efis A321 InHg/hPA toggle (default A321)

 1106 Efis A321 ILS mode toggle (default A321)

 1107 AP alt change rate toggle (default A321)

 1108 Efis ND scale set (parameter 0–7 for 738, 0–5 for A321) (default B738 and A321)

 1109 Efis ND mode set (parameter 0–2 for 738, 0–3 for A321) (default B738 and A321)

 1110 Efis ND map item set (parameter 0–3) (default B738 and A321)

 1111 Efis VORADF1 set (parameter 0–2) (default B738 and A321)

 1112 Efis VORADF2 set (parameter 0–2) (default B738 and A321)

 1113 Efis A321 InHg/hPA set (parameter 0–1) (A321)

 1114 List local panel variables (―L:vars‖) in log when change aircraft

1115 IYP Listen On

1116 IYP Listen Off

1117 IYP ComeFly Active

1118 IYP ComeFly Inactive
1930 FSUIPC bank hold off

1931 FSUIPC bank hold on

1932 FSUIPC bank hold set

1933 FSUIPC bank hold toggle

1934 FSUIPC mach hold off

1935 FSUIPC mach hold on

1936 FSUIPC mach hold set

1937 FSUIPC mach hold toggle

1938 FSUIPC pitch hold off

1939 FSUIPC pitch hold on

1940 FSUIPC pitch hold set

1941 FSUIPC pitch hold toggle

1942 FSUIPC speed hold off

1943 FSUIPC speed hold on

1944 FSUIPC speed hold set

1945 FSUIPC speed hold toggle

2010 PM MCP SPD push on B747

2011 PM MCP HDG sel on B747

2012 PM MCP ALT push on B747

2013 –

2014 –

2015 –

2016 –

2017 PM MCP FD2 off

2018 PM MCP FD2 on

2019 PM MCP A/T on

2020 PM MCP A/T off

2021 PM MCP THR mode button

 26

2022 PM MCP SPD mode button

2023 PM MCP Mach/IAS sel

2024 PM MCP FLCH mode button

2025 PM MCP HDG mode button

2026 PM MCP VNAV mode button

2027 PM MCP LNAV mode button

2028 PM MCP LOC mode button

2029 PM MCP APP mode button

2030 PM MCP ALT mode button

2031 PM MCP VS mode button

2032 PM MCP AP1 (L) button

2033 PM MCP AP2 (C) button

2034 –

2035 –

2036 PM MCP AP3 (R) button

2037 PM MCP FD1 off

2038 PM MCP FD1 on

2039 –

2040 PM MCP AP Disc (not 747)

2041 PM MCP AP Eng (not 747)

2042 PM MCP AP Disc (747 only)

2043 –

2044 –

2045 –

2046 –

2047 –

2048 –

2049 PM AB LS button

2050 PM AB STD QNH rel (push)

2051 PM AB STD QNH set (pull)

2052 PM AB SPD button push

2053 PM AB SPD button pull

2054 PM AB HDG button push

2055 PM AB HDG button pull

2056 PM AB ALT button push

2057 PM AB ALT button pull

2058 PM AB VS button push

2059 PM AB VS button pull

2060 PM AB EXPED button

2061 PM AB TRKFPA button

2062 –

2063 –

2064 PM PFD Decision Ht Dec

2065 PM PFD Decision Ht Inc

2066 PM MCP Hdg Dec 1

2067 PM MCP Hdg Inc 1

2068 PM MCP Hdg Dec 10

2069 PM MCP Hdg Inc 10

2070 PM MCP Alt Dec 100

2071 PM MCP Alt Inc 100

2072 PM MCP Alt Dec 1000

2073 PM MCP Alt Inc 1000

2074 PM MCP Spd Dec 1/.01

2075 PM MCP Spd Inc 1/.01

2076 PM MCP Spd Dec 10/.10

2077 PM MCP Spd Inc 10/.10

2078 PM MCP V/S Dec 100

2079 PM MCP V/S Inc 100

2080 PM MCP Crs Dec 1

2081 PM MCP Crs Inc 1

2082 PM QNH Dec 0.01/1

2083 PM QNH Inc 0.01/1

2084 PM ND Range Dec

2085 PM ND Range Inc

2086 PM ND Mode Dec

2087 PM ND Mode Inc

2088 PM ND2 Range Dec

 27

2089 PM ND2 Range Inc

2090 PM ND2 Mode Dec

2091 PM ND2 Mode Inc

2092 –

2093 –

2094 –

2095 –

2096 PM AB ND ILS Mode

2097 PM ND Map Arc Mode

2098 PM ND Map Ctr Mode

2099 PM ND Rose Mode

2100 PM ND Map Plan Mode

2101 PM ND Range 10

2102 PM ND Range 20

2103 PM ND Range 40

2104 PM ND Range 80

2105 PM ND Range 160

2106 PM ND Range 320

2107 PM ND Range 640

2108 PM ND VOR display

2109 PM ND NDB display

2110 PM ND WPT display

2111 PM ND ARPT display

2112 PM ND DATA display

2113 PM ND POS display

2114 PM AB ND VOR1 on

2115 PM AB ND ADF1 on

2116 PM AB ND VORADF1 off

2117 PM AB ND VOR2 on

2118 PM AB ND ADF2 on

2119 PM AB ND VORADF2 off

2120 PM AB ND Metric

2121 PM AB ND HDGVS/TRKFPA

2122 PM AB THR TOGA

2123 PM AB THR FLX/MCT

2124 PM AB THR CLB

2125 PM AB THR IDLE

2126 PM AB THR REV IDLE

2127 PM AB THR MAX REV

2128 PM AB ND2 ILS Mode

2129 PM ND2 Map Arc Mode

2130 PM ND2 Map Ctr Mode

2131 PM ND2 Rose Mode

2132 PM ND2 Map Plan Mode

2133 PM ND2 Range 10

2134 PM ND2 Range 20

2135 PM ND2 Range 40

2136 PM ND2 Range 80

2137 PM ND2 Range 160

2138 PM ND2 Range 320

2139 PM ND2 Range 640

2140 PM ND2 VOR display

2141 PM ND2 NDB display

2142 PM ND2 WPT display

2143 PM ND2 ARPT display

2144 PM ND2 DATA display

2145 PM ND2 POS display

2146 PM AB ND2 VOR1 on

2147 PM AB ND2 ADF1 on

2148 PM AB ND2 VORADF1 off

2149 PM AB ND2 VOR2 on

2150 PM AB ND2 ADF2 on

2151 PM AB ND2 VORADF2 off

2152 PM AB ND2 Metric

2153 PM AB ND2 HDGVS/TRKFPA

2154 –

2155 –

 28

2156 –

2157 –

2158 –

2159 –

2160 PM EICAS Show Controls

2161 PM EICAS Standby Gauge

2162 PM EICAS Page Dec

2163 PM EICAS Page Inc

2164 PM EICAS Synoptic Dec

2165 PM EICAS Synoptic Inc

2166 PM AB ND ILS Mode

2167 PM ND Plan Wpt Dec

2168 PM ND Plan Wpt Inc

2950 PM Elec All Toggle

2951 PM Elec PFD Toggle

2952 PM Elec ND Toggle

2953 PM Elec EICAS Toggle

2955 PM Elec PFD2 Toggle

2956 PM Elec ND2 Toggle

2958 PM Elec Stdby Toggle

2966 PM Elec All ON

2967 PM Elec PFD ON

2968 PM Elec ND ON

2969 PM Elec EICAS ON

2971 PM Elec PFD2 ON

2972 PM Elec ND2 ON

2974 PM Elec Stdby ON

2982 PM Elec All OFF

2983 PM Elec PFD OFF

2984 PM Elec ND OFF

2985 PM Elec EICAS OFF

2987 PM Elec PFD2 OFF

2988 PM Elec ND2 OFF

2990 PM Elec Stdby OFF"

2994 PM Whazzup keys (by Param), see PM offsets list, 542E

2995 PM Quickmap keys (by Param), see PM offsets list, 542C

2996 PM GC keys (by Param), see PM offsets list, 542A

2997 PM CDU keys (by Param), see PM offsets list, 5428
 Note: all the ―Keys‖ inputs to PM modules provide efficient ways of directing specific keypresses to them, wherever they may

be on the Network. The parameter in these is the keystroke code (see the list earlier in this document) , plus

specific PM-defined values for shifts, thus:
 256 for Shift, 512 for Ctrl, 1024 for Alt.

 You don‘t need to worry about changing other bits when two codes are the same—FSUIPC takes are of that

automatically.

 29

2998 PM MCP Kcodes (by Param), see Pm offsets list, 04F2

 This way of controlling the PM MCP may offer some features not found elsewhere. The parameter

is the number used in the Elan Informatique ―Knnn‖ codes normally sent to the MCP via a serial

connection. Here is a list of those known at present, but please refer to the PM offsets document for

up-to-date information:

10 SPDP (SPD pushbutton 747 MCP,

Speed Intervention on B737 MCP)

11 HDGP (heading SEL pushbutton 747 MCP,

use 25 for HDG HOLD,

use 25 for HDG SEL on the 737)

12 ALTP (ALT pushbutton 747 MCP,

Altitude Intervention on 737 MCP)

17 FDON (switch on First Officer’s FD)

18 FDFF (switch off First Officer’s FD)

19 ATON (switch on)

20 ATFF (switch off)

21 THR

22 SPD

23 MACH

24 FLCH

25 HDG K025

26 VNAV K026

27 LNAV K027

28 LOC K028

29 APP K029

30 ALT K030

31 VS K031

32 AP1 K032

33 AP2 K033

34 CWSA K034

35 CWSB K035

36 AP3 K036

37 FDON K037 (switch on Captain’s FD)

38 FDFF K038 (switch off Captain’s FD)

40 APDI (AP Disengage –

not used in 747-400 MCP)

41 APEN (AP Engage –

not used in 747-400 MCP)

44 FPV

45 MTRS

46 CTR ND

47 TFC (TCAS)

48 RST

49 STD

50 VOR1

51 ADF1

52 OFF1

53 VOR2

54 ADF2

55 OFF2

62 IN

63 HPA

64 setDH

65 setMDA

66 APP ND

67 VOR ND

68 MAP ND

69 PLN ND

70 VOR

72 OFF1

73 VOR2

74 ADF2

75 OFF2

80 STA

81 WXR

99 DISC (747 disconnect)

144 FPV Copilot

145 MTRS Copilot

147 TFC (Copilot TCAS)

148 RST Copilot RST

149 STD Copilot STD

170 VOR1 F/O

171 ADF1 F/O

172 OFF1 F/O

173 VOR2 F/O

174 ADF2 F/O

175 OFF2 F/O

 30

2999 Project Magenta GC Controls. Param specifies action, as shown below (list from Project Magenta

―Offsets‖ publication, with permission). [Add 100 for First Officer GC, else Captain side assumed.]

Airbus

1 MAP (Captain Side, 101 F/O side)

2 NAV (Captain Side, 102 F/O side)

3 VOR (Captain Side, 103 F/O side)

4 PLAN (Captain Side, 104 F/O side)

5 ILS Mode

Boeing 'Classic Modes'

1 MAP ARC

2 MAP CTR

3 VOR

4 MAP PLAN

New ND Modes (!)

1 MAP

3 VOR

4 PLN

5 APP

6 CTR Pushbutton

7 Force display to 8 Modes

(APP/VOR/MAP/PLN)

8 Show Controls in EICAS/ECAM

9 Hide Controls in EICAS/ECAM

10 PFD/ND->PFD->ND (like F4,F1,F2 in GC)

11 PFD/EICAS

12 EICAS with Standby

13 EICAS without Standby

14 FPV (Boeing)

15 EICAS/ND

19 Toggle Controls in EICAS/ECAM

20 Incr Engine Page

21 Decr Engine Page

22 Toggle No Smoking

23 Toggle Seatbelts

24 Toggle Overview Page

25 Toggle RMI/HSI display in Boeing-Type

ND MAP ARC

26 Metric Toggle

28/29 ND Mode INC/DEC for Airbus

30 Engine Page (Primary) 0

31 Engine Page 1

32 Engine Page 2

..

39 Engine Page 9 (if defined)

40 Range 5 NM

41 Range 10 NM

42 Range 20 NM

43 Range 40 NM

44 Range 80 NM

45 Range 160 NM

46 Range 320 NM

47 Range 640 NM

48 Range DEC

49 Range INC

50 TCAS Off

51 TCAS Alt

52 TCAS Callsign

53 TCAS All

54 Toggle TCAS Off/Alt

55 Show MCP Values in EICAS (Boeing)

56 Hide MCP Values in EICAS (Boeing)

57 PLAN mode next waypoint

58 PLAN mode previous waypoint

60 Show Overview Page in ND

61 Hide Overview Page in ND

62 Set/Reset Timer (AB Glass Cockpit)

70 Show WXR

71 Hide WXR

72 Toggle WXR

73 VORADFL OFF

74 ADFL ON

75 VORL ON

76 VORADFR OFF

77 ADFR ON

78 VORR ON

80 Terrain Display On

81 Terrain Display Off

82 Toggle Terrain Display

83 Terrain Type Change

84 Terrain Colour/Mode Change

85 Terrain Size Change

86 Terrain 3D

90 STA

91 VOR

92 NDB

93 WPT

94 ARPT

95 DATA

96 POS

321 Decr Synoptic/System Display Page

322 Incr Synoptic/System Display Page

(Boeing)

Secondary EICAS pages and functions 747

(777)

301 ENG

302 STAT

303 ELEC

304 FUEL (777: HYD)

305 ECS (777: FUEL)

306 HYD (777: AIR)

307 DRS (777: DOORS)

308 GEAR

309 --- (777: FCTL)

310 CANC

311 RCL

(Boeing)

401 Caution On (see 0x4FE)

402 Caution Reset

411 Show FuelUsed Toggle

412 ShowFuelUsed On

413 ShowFuelUsed Of

414 Reset FuelUsed = 0

(Both)

421 Toggle No Smoking

422 No Smoking On

423 No Smoking Off

424 Toggle Seatbelts

425 Seatbelts On

426 Seatbelts OfF

(Airbus)

Secondary EICAS pages and functions AB

301 ENG

302 BLEED

303 PRESS

304 ELEC

305 HYD

306 FUEL

307 APU

308 COND

310 DOOR

311 WHEEL

312 F/CTL

313 ALL

314 CLR

315 STS

316 RCL

317 CLR

318 EL/DC (A330/340)

319 C/B (A330/340)

 31

x0100zzzz Offset Byte Set (offset = zzzz), hexadecimal
x0200zzzz Offset Word Set (offset = zzzz), hexadecimal
x0300zzzz Offset Dword Set (offset = zzzz), hexadecimal
x0500zzzz Offset Byte Setbits (offset = zzzz), hexadecimal
x0600zzzz Offset Word Setbits (offset = zzzz), hexadecimal
x0700zzzz Offset Dword Setbits (offset = zzzz), hexadecimal
x0900zzzz Offset Byte Clrbits (offset = zzzz), hexadecimal
x0A00zzzz Offset Word Clrbits (offset = zzzz), hexadecimal
x0B00zzzz Offset Dword Clrbits (offset = zzzz), hexadecimal
x0D00zzzz Offset Byte Togglebits (offset = zzzz), hexadecimal
x0E00zzzz Offset Word Togglebits (offset = zzzz), hexadecimal
x0F00zzzz Offset Dword Togglebits (offset = zzzz), hexadecimal
x1100zzzz Offset UByte Increment (offset = zzzz), hexadecimal *
x1200zzzz Offset UWord Increment (offset = zzzz), hexadecimal *
x2100zzzz Offset UByte Decrement (offset = zzzz), hexadecimal *
x2200zzzz Offset UWord Decrement (offset = zzzz), hexadecimal *
x3100zzzz Offset SByte Increment (offset = zzzz), hexadecimal *
x3200zzzz Offset SWord Increment (offset = zzzz), hexadecimal *
x4100zzzz Offset SByte Decrement (offset = zzzz), hexadecimal *
x4200zzzz Offset SWord Decrement (offset = zzzz), hexadecimal *
x5100zzzz Offset Byte Cyclic Increment (offset = zzzz), hexadecimal *
x5200zzzz Offset Word Cyclic Increment (offset = zzzz), hexadecimal *
x6100zzzz Offset Byte Cyclic Decrement (offset = zzzz), hexadecimal *
x6200zzzz Offset Word Cyclic Decrement (offset = zzzz), hexadecimal *
x7000zzzz Offset Float32 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7400zzzz Offset Float64 Set/1000 (offset = zzzz): the parameter is divided by 1000
x7800zzzz Offset Float32 Inc/1000 (offset = zzzz): the parameter is divided by 1000
x7C00zzzz Offset Float64 Inc/1000 (offset = zzzz): the parameter is divided by 1000
 (For “decrements” use a negative parameter in the increment controls)

 * The fixed point increment/decrement values operate on Unsigned (U) or Signed (S) values, and have a

parameter with the unsigned or signed limit in the upper 16 bits and the increment/decrement amount (always
unsigned) in the lower 16 bits.

Macro Controls

FSUIPC4 will read any file in the Modules folder which has file type ―mcro‖. Such files contain definitions of

additional controls to be listed and assignable in FSUIPC4's Keys, Buttons and Axis Assignments dialogues. All

macro files are also re-read and re-installed whenever the Reload button in any of those three dialogues are used.

It is important that the file name (xxxx.mcro) be unique in the first 16 characters, as this will be used as part of the

name of the added controls in the drop-downs. Best to keep the names short and to the point—probably the name of

the program or program function for which the controls are being added.

Inside a macro file there should be just one section called [Macros]. This must contain definitions of numbered

controls, with names also up to 16 characters. These names only have to be unique in that file.

Here is an example, here for a possible Project Magenta glass cockpit ND Mode switch:

[Macros]

1=MAP Capt=C2999,1

2=NAV Capt=C2999,2

3=VOR Capt=C2999,3

4=PLN Capt=C2999,4

5=APP Capt=C2999,5

6=CTR Capt=C2999,6

101=MAP F/O=C2999,101

102=NAV F/O=C2999,102

103=VOR F/O=C2999,103

104=PLN F/O=C2999,104

105=APP F/O=C2999,105

106=CTR F/O=C2999,106

Note that the numbers on the left do not have to be contiguous, but must be in the range 1–999 inclusive. These will

be used internally, and in the FSUIPC4 INI file, to identify the control within the file.

 32

Supposing the example above occurred in a file called ‗PM GC.mcro‘. The names which would then appear, in

proper alpha sequence in the FSUIPC4 drop-downs, would be:

PM GC: APP Capt

PM GC: APP F/O

PM GC: CTR Capt

PM GC: CTR F/O

PM GC: MAP Capt

PM GC: MAP F/O

PM GC: PLN Capt

PM GC: PLN F/O

PM GC: VOR Capt

PM GC: VOR F/O

The value assigned to each control is either another control (any FS or FSUIPC-added control, including offset

controls and even macro controls—see later), or a Keypress. i.e:

Either: Cn,p (control number, parameter, optionally in hex with a preceding x)

Or: Kk,s (keycode and shifts).

Both of these are exactly as already defined for Button controls—see the earlier section on Button programming.

Macro Control References

Macro controls are represented internally in the same sort of way as FSUIPC offsets controls, by using high-value

bits in the control number. However, the representation in Macro files and in the INI file is as follows:

Mm:n

where m if the Macro File number (see below) and n is the control number from the file, as described above.

Macro file numbers are assigned by FSUIPC when it loads the file. These are remembered in the INI file in a new

section [MacroFiles]. For example, in the above case you might get:

[MacroFiles]

1=PM GC

making ―PM GC.mcro‖ file number 1 for all reference purposes.

It is important to note that different users will have a different selection of macro files in different orders. If they

wish to exchange Button assignments they will need to re-assign all macro controls after making their [MacroFiles]

sections the same, or at least the same for those files they have in common.

Multiple actions in one macro control

A macro control is not limited to having only one resulting action. If more than one action is required several lines

are used in the definition, as follows:

n=<name>

n.1=action1

n.2=action2

etc.

For an example consider a ‗Menu.mcro‘ file containing these definitions:

[Macros]

1=Display

1.1=K79,16 ;O

1.2=K69,8 ;E

1.3=K68,8 ;D

2=FSUIPC

2.1=K68,16 ;Alt D

2.2=K70,8 ;F

 33

This adds two controls, ‗Menu: Display‘ and ‗Menu: FSUIPC‘. The first uses ALT+O E D keystrokes to call up the

FS display settings dialogue, the second uses ALT+D F to call up the FSUIPC4 options.

Note that there‘s a limit of 2000 numbered parameters in total in the macro file—so, for instance, 999 macro

numbers (1–999, the maximum) with an average of two actions each would be just two shy of the limit. Large files

aren‘t good in any case as the drop-down list will be full of the added controls all beginning with the same filename.

Best to split into functional groups with meaningful filenames, to make the controls easier to locate.

Parameter passing

Normally, and certainly in all the above examples, any parameter set for a Macro Control, when assigned in the

Buttons or Keys dialogues, would be discarded as not relevant. However, there is a facility to allow it to be used.

If the parameter part of any of the controls defined in the macro is omitted, the parameter value from the calling

macro is substituted.

As a rather silly example, if you wanted a general PM GC control but not the one named already in FSUIPC, you

could define it as

7=by param=C2999

This would appear in the drop-downs as ‗PM GC:by param‘, and the parameter assigned by the user would be used

in the C2999 operation. Note that in multiple-line definitions, the same parameter value substitutes for every omitted

parameter value.

One interesting consequence of this is the possibility of defining axis controls. To make another silly example, if I

define a macro like this:

8=Flaps=C66534 ;FS control 66534 is Axis Flaps Set

and then assign it to an axis in the Axis assignments dropdown, the axis I've assigned will operate exactly as the Axis

Flaps Set axis.

This may not seem so futile when you realise that you can have multiple line mixtures of controls and keypresses

also produced by the same Macro. I'm sure there would be wealth of ideas for using this ‗feature‘ (which actually fell

out of the implementation by accident rather than by design!).

Mouse macros

Another feature of Macro files is their ability to add controls to your armoury which operate switches, dials and other

features of FS panels and gauges (mostly add-on ones) which can otherwise only be operated by using the mouse.

Furthermore, this facility can actually be used even without recourse to manually preparing the macro files directly—

that part is semi-automated via Mouse Macro buttons in both the Buttons and Keys option tabs in FSUIPC. Details of

the automatic facilities are provided in the main User Guide. Here we just concentrate on the file itself, the format of

the mouse macro lines.

Note that a single Macro file can contain any mixture of mouse and other macros. In fact Mouse, Control and

Keypress actions can all be mixed and combined in a single Macro. Of course, this doesn‘t happen for the

automatically generated macros.

This mouse facility adds the rather obscure format:

 R<module>:<rect#>,<mouseflag>

to those already described for Keys (K), Controls (C) and onward Macro references (M). The ‗R‘ here is for mouse

Rectangle, because it is via specific rectangular areas on screen that FS recognises mouse requests. An ‗M‘ for

Mouse would have been better, but that‘s already used for Macro.

Now I‘ll explain what the values in this specification actually mean, but in general no user will actually be concerned

with them, as they either have to be supplied be the gauge maker (the add-on panel supplier), or, more usually, be

generated automatically for you by FSUIPC, through use of the Mouse itself in mouse macro creation mode.

So, in the mouse action specification:

 34

<module>: is optional. It is a reference to the Gauge or DLL filename, the part of the panel which will be asked to

process the Mouse action. It is a numerical reference to another line which must also be present somewhere in the

[Macros] section of the .MCRO file, one like this:

 ModuleN=‖name of gauge or DLL‖

where ‗N‘ can run from 1 to 99, or be omitted (so giving ―Module=‖...‖).

If the <module>: part of the mouse action is omitted, the Module being referenced is the one with no number.

Otherwise it is simply N:, referring directly to the module.

The <rect#> part is the only mandatory part. It is either a reference to the ―MouseRect‖ number in the tables in the

Module—as ―Rn‖ referring to the nth rectangle, counting from 0—or a direct reference to the Mouse Function inside

the module, as ―RXxxxx*xxxx‖, where the ‗xxxx‘ parts refer to a hexadecimal offset and check-word, respectively.

The offset is from the Module‘s load address in memory, and the check word are the 16 bits around the mouse

function‘s entry point: 8 bits before and 8 bits after. The check-word is a safety measure, in case the macro is used on

a different version of the same Gauge or DLL.

Finally, the ,<mouseflag> part provides the actual mouse action required to operate the facility. This is encoded as a

number and will sometimes be one of the following:

31 MOUSE_RIGHTSINGLE

30 MOUSE_MIDDLESINGLE
29 MOUSE_LEFTSINGLE

28 MOUSE_RIGHTDOUBLE

27 MOUSE_MIDDLEDOUBLE
26 MOUSE_LEFTDOUBLE

21 MOUSE_DOWN_REPEAT

19 MOUSE_RIGHTRELEASE *
18 MOUSE_MIDDLERELEASE *

17 MOUSE_LEFTRELEASE *

 14 MOUSE_WHEEL_UP
 13 MOUSE_WHEEL_DOWN

11 MOUSE_LEAVE *

Of these, 29 is by far the most common and is assumed when the parameter is omitted. Note that the values actually

equate to the mouse flags by those names in the FS Gauge C/C++ SDK.

Those marked * cannot be generated automatically by FSUIPC as they refer to the mouse buttons being released.

However, they may be needed for some switch implementations, and you would need to add them yourself—

experimentation is key here. There are examples in the main User Guide.

Just to put all this stuff into context, here are some actual examples. The first is from the FS9 PMDG737NG

overhead:

Module="PMDG_737NG_Overhead.gau"

1=Batt=RX3170*X8b90

Module1="PMDG_737NG_OHD_APU.GAU"

40=APU=R1:1

If these lines are in a loaded MCRO file called ―737 OHD‖ then the Buttons and Keys controls drop-downs would

list ―737 OHD:Batt‖, which would operate the Battery switch, and ―737 OHD: APU‖ which would operate the APU

switch. These would only do anything if the overhead gauge is loaded—i.e. the aircraft is in use. Note that the

Overhead gauge itself doesn‘t have to be visible.

Here is an extract from the Macro file for the add-on gauge/DLL ―APchart‖:

Window="Airport Chart"

Module="APchart.dll"

1=Show/Hide=C66506,10000

...

7=Knob1 Down=R20,14

8=Knob1 Up=R20,13

This has a non-Mouse control included to show and hide the AP chart window. That uses the ―PANEL ID SET‖

control with the panel ID number 10000 as parameter (gleaned from the Panel.cfg file). It also has a couple of entries

shown which are operated by the mouse wheel.

But note that new parameter:

 Window="window title"

This needs to be present when it only makes sense to use the controls with the window both open and visible. This

applies to APchart where zooming and moving the chart would be daft without seeing it. You will find Window

names for panel parts in the Panel.CFG file. The automatic mouse macro generating facilities in FSUIPC never add a

Window parameter, so this may be the one good reason you ever edit a MCRO file.

 35

Gauge local variable access (L:vars), by macro

Local named panel variables (―L:<name>‖), which I‘ll refer to as ―Lvars‖, can now be listed in the Log, written to

via Macros, and manipulated with both reads and writes through extensions to the ipc Lua Library

The log listing is obtained for the currently loaded aircraft panels by a new assignable control in the drop-down lists

called ―List local panel variables‖.

This requests FSUIPC4 to list all Lvars found in the FSUIPC4 log file, by L:name and current value. For example,

here‘s the Log listing for the default Cessna 172 with the G1000:

 Aircraft="Cessna Skyhawk 172SP G1000"

 Panel includes these local variables:

 L:CDI Source Selected = 1.000000
 L:time hdg bug changed = 0.000000

 L:time crs changed = 0.000000

 L:SelectedNav2 = 0.000000
 L:SelectedCom2 = 0.000000

 L:pfd HDGKnob pressed = 0.000000

 L:COM1 Mic pressed = 0.000000

 L:COM2 Mic pressed = 0.000000

 L:NAV1 pressed = 0.000000

 L:NAV2 pressed = 0.000000
 L:MKR pressed = 0.000000

 L:DME pressed = 0.000000

 L:COM1 pressed = 0.000000
 L:COM2 pressed = 0.000000

 L:Reversionary pressed = 0.000000

 L:map_ZoomStep = 0.000000

 L:map_ZoomFactor = 0.000000

 L:MapInit = 0.000000

 L:LayerAirports = 0.000000
 L:LayerAirspaces = 0.000000

 L:LayerTerrain = 0.000000

 L:LayerVORs = 0.000000
 L:LayerILSs = 0.000000

 L:LayerNDBs = 0.000000

 L:LayerLowAirways = 0.000000

 L:LayerTags = 0.000000

 L:LayerCompass = 0.000000

 L:LayerIntersections = 0.000000
 L:LayerRangeRings = 0.000000

 L:VehicleObjectDetail = 0.000000

 L:Filter = 0.000000
 L:LastLandingLightPosition = 0.000000

 L:EmergencyThrottleInUse = 0.000000

 L:Engine1ThrottlePosition = 24.404907

Note that all FSUIPC can do is list what it finds. Whether the values are of any use or not is questionable—they are

internal to the gauge and how they are used, manipulated, and so on, will vary enormously. By all means try things if

you wish, but don‘t assume the solution is there waiting for you.

Some of the really useful Lvars, specifically those for the default B738 and A321 EFIS panels, have been given

specific FSUIPC4 controls and also offsets so that they can be manipulated directly by application programs. But for

the others you will need to use Macro files or Lua plug-ins, as described next..

Macros to change Lvars

The macro facility to operate Lvars can only be used by editing macro files and building them manually. The format

is:

 N=L:name=ACTION

Where ACTION must be one of: Set, Inc, Dec, Cyclic or Toggle (but only the first 3 letters are needed):

Set copies the parameter in the Macro invocation to the identified Lvar. Alternatively, a value can be

given explicitly here, by ―Set,n‖. Values are limited to the normal parameter range, –32768 to

32767.

Inc increments the value, and here the parameter (explicit or supplied) gives the upper limit, which can

be equalled but not exceeded.

Dec decrements the value, with the parameter setting the lower limit.

Cyclic is the same as Inc, but after the limit is reached the next value is 0.

Toggle changes the value to zero if it is non-zero, or 1 if it is zero.

The multi-line macro format can still be used with the Lvar macros, as follows:

 N=L:name

 N.1=action1

 N.2=action2

 ... etc.

Lua access to Lvars

The Lua facilities are ipc.readLvar, ipc.writeLvar, ipc.getLvarName, and ipc.getLvarId. These are all described

in the updated Lua library documentation, and a sample Lua plug-in is provided demonstrating their use.

 36

Automatic running of Macros and Lua plugins

By some editing in the INI file, you can arrange for one or more Macros or Lua plugins to be executed, in order,

automatically whenever the current aircraft is changed (or, indeed, first loaded), or a specific named aircraft (or

Profile) is loaded.

This allows switches, offsets, and other things to be set specifically for an aircraft (or aircraft type, for Profiles) when

it is first loaded.

This is done by adding new sections to the INI file with the title{

 [Auto]

 or

 [Auto.xxxx...]

where the xxxx part is the aircraft name, or part-name (as in Aircraft Specific sections), or a profile name when

profiles are being used.

These Auto sections thus parallel the Keys and Buttons sections -- the naming and selection follows the same system.

The generic [Auto] section is carried out for all aircraft changes whilst the specific ones are only applied to matching

aircraft or profile..

Each Auto section contains a series of numbered lines (1=..., 2=... etc) each of which is either a Lua command, or a

Macro call. For example:

 [Auto.737]

 1=Lua SetMyOffsets

 2=737 OHD:Air Allbleeds

When Lua calls run a plug-in which doesn't self-terminate, the plug-in thread still running is killed automatically on

an aircraft/profile change.

Axis Assignments

Axis assignments are saved in the [Axes] section, or [Axes.<aircraft name>] for aircraft specific assignments.

Generic aircraft assignments can be made using the same parameter and name shortening as for the Buttons and

Keyboard sections.

The polling interval can be changed by a parameter

PollInterval=10

inserted into the main [Axes] section. The units are milliseconds, 10 being the default.

The format of the axis parameters in these sections is as follows:

For the main axis entry (explanation of values below):

n=ja,(R)delta(/delay)

where the parentheses merely show optional parts, and

j = joystick # (0 to 18, 16 to 18 being PFC)

a = axis (XYZRUVSTPQMN)

R is only present when "Raw" mode is selected

delta is the delta value (eg 512, or 1 for Raw mode and POVs)

/delay is an optional delay*, in milliseconds

When axis controls are assigned (the left part of the options), this is extended by the definition of the controls:

n=ja,(R)delta(/delay),ForD,ctl1,ctl2,ctl3,ctl4

where

ForD is an F for "FS control" or D for "Direct to FSUIPC calibration"

 37

ctl1 to ctl4 are the control numbers, or zero where unassigned. For Direct mode, these are the calibration

indices, 1–4 on Page 1 of calibrations, 5–8 on page 2, etc. Numbers 45–48 are the ―dual‖ controls, equating

to others depending on whether FS is in flight mode or Slew mode.

* FSUIPC4 can apply delays to any axis assigned through its Axis Assignment facilities. The delay is limited to

a minimum of 2 x the axis polling interval (which defaults to 10 mSecs) and a maximum of 200 x this interval

(i.e. 2 seconds with the default polling interval).

Delays for axes have to be edited in the INI file. There is no facility to change them or even see them in the

option screens. Delays of 200 mSecs or more should be reasonably accurately maintained most of the time, but

short ones could vary quite a bit, the smaller you set them, because of the granularity of the polling interval and

the sharing of the processor with other things going on in FS.

Here's an example of an axis assigned to the FSUIPC4 Spoiler, with a 1 second delay:

0=0Y,256/1000,D,22,0,0,0

If the axis is programmed to send controls based on the axis passing through zones (the right side of the options),

there will also be entries for each such assignment, thus:

n=ja,UDorB(R),low,high,ctl,param

where

UDorB is U for Up, D for Down or B for Both

R optionally specifies Repeat

low and high give the axis values for the zone

ctl and param are the Control numbers, and Parameter where used.

Here's an example for a Gear lever:

1=0Z,256/500

2=0Z,U,6400,16383,66079,0

3=0Z,D,-16384,-13783,66080,0

Note that the delay option (here half a second) still goes on the main axis entry, the one defining the delta (and

"Raw" mode if applicable).

You can edit the INI file whilst FS is running, then simply going to the Axis Assignment options page and clicking

the reload button at the bottom of the window.

Additional parameters to scale input axis values

Axis values assigned in FSUIPC4 can be arithmetically adjusted before being passed onto FSUIPC4 calibration (or

to FS via FS controls). To do this you assign the axis as normal, then edit the FSUIPC4.INI file. Find the axis

assignment there, in the relevant [Axes] section, and add one or both of these parameters to the end:

,*<number> to multiply the axis value by <number>. This can be a fraction, such as 0.5 (to divide by 2),

and it can be negative, to reverse the axis direction.

,+<number> or -<number>

to add or subtract a number (an integer, no fractions) to or from the value.

If both parameters are given, the multiplication must come first, and is performed first. The resulting value is

constrained to be in the range -16384 to +16383.

As an example, if the normal input range of an axis is -16384 to + 16383 and you only want the positive half, but

need to still use the whole of the lever movement:

,*0.5,+8192

would be added to the assignment. The *0.5 changes the range to -8192 to +8191, and then adding 8192 gives 0 to

+16383.

After editing, just tell FSUIPC to reload the axis assignments (a button on the Axes page). You won't see the results

there, but you will in the calibrations.

 38

Programs: facilities to load and run additional programs

FSUIPC4 can, as an extra, cause other programs to be run each time you load and run Flight simulator. Details of

what programs to be run are provided in an additional section in the FSUIPC4.INI file. This section cannot be edited

in the on-line FSUIPC4 options dialogues. You need to edit the details directly in the INI file.

The additional section is

 [Programs]

and can contain up to 16 requests to run other programs—up to 8 ―Run‖ parameters Run1 to Run8, and up to 8

―RunIf‖ parameters, RunIf1 to RunIf8. Both sets are otherwise identical in format. The only difference is that the

RunIf programs are not run if they appear to be already running. The ordinary ―Run‖ programs will be loaded

without such checking.

The format is simply:

 RunN=(Options,)<full pathname of program to be run>

or RunIfN=(Options,)<full pathname of program to be run>

where N runs from 1 to 8. Details of options are given below, but if none are required the parameter simplifies into

just the full pathname.

For example: Run1=D:\RadarContact\RCV4.exe

might be used to run Radar Contact version 4.

If the program needs command-line parameters these can be included by enclosing the whole value in quotes, so that

the space(s) needed don't cause problems. You may also need to include the quotes if the pathname includes spaces.

For example:

 Run2="c:\epic\loadepic fs98jet"

The programs are loaded in order of the run number, 1–8. If a mixture of Run and RunIf parameters are given, the

order is Run1, RunIf1, Run2, RunIf2, and so on.

The Options you can use are as follows:

HIDE tries to get the program to hide itself when it runs. This is only possible if the program

defines its window to use default settings, so it isn‘t very useful for many programs,

unfortunately.

HIGH runs the program at higher priority than FS. Use with care! Messing about with priorities

doesn‘t work well in all circumstances, and FSX may not like it much.

CLOSE closes the program tidily (if possible) when FS is terminated.

KILL forcibly terminates the program, if possible, when FS is terminated.

LOW runs the program at IDLE priority. Depending on what the program does, this may actually

effectively stop it until you direct user focus to it, as FS tends to soak up all Idle time.

READY delays loading and running the program until FS is up and ready to fly, and FSUIPC4 can

supply valid data through its IPC interface. (This parameter may, of course, result in the

programs being run in a different order to that specified by the Run number).

Of these really only CLOSE, KILL and READY are of general use. If you want to apply more than one option, list

them separated by commas, but no spaces. For example:

 RunIf1=READY,KILL,D:\FS2002\WeatherSet.exe

Assignment of additional axis controls

 (Reverser, Aileron and Rudder Trims, and Cowl Flaps)

There are no axis controls provided in FS for jet thrust reversing nor for aileron or rudder trim or even for setting the

cowl flaps. To get around this, and for other axis assignments not possible in FS‘s menus, please check the Axis

 39

Assignment facilities in the FSUIPC4 options. You‘ll find a lot more axis type controls you can assign there, and by

directing the Aileron Trim, Rudder Trim and Cowl Flaps to FSUIPC4‘s own calibrations, they can be operational

within minutes. FSUIPC4‘s Joystick section (on page 7 or 8) deals with these.

The Reverser control is special to FSUIPC4 and can be assigned and calibrated in the same way. Additionally there‘s

another controlling parameter:

MaxThrottleForReverser=0

This controls the interlock—the reverser will not engage until all throttles are reduced to this setting (normally 0, or

idle). You can try a non-zero value here if you cannot calibrate your throttles to produce a stable idle zero.

Multiple Joysticks for Multiple Pilots

Method 1:

Using the Joystick sections of the FSUIPC4 options to calibrate the main flight controls, FSUIPC4 can also accept up

to four different control inputs for each main flight control, treating them equally. You can have up to 4 aileron,

elevator, rudder, throttle, left and right brake controls. FSUIPC4 takes the value from the input giving maximum

deflection from ‗neutral‘ or ‗idle‘. There‘s no averaging, or other types of conflict resolution, taking place.

You have to somehow connect up your multiple joystick axes, whether by using an EPIC card, multiple Game Ports,

or multiple USB devices. FSUIPC4 cannot help there. Having done that, you need to find ‗spare‘ FS controls which

you will not otherwise be using from joystick inputs (see the List of FSX controls PDF)—it doesn‘t matter if you

will be using those controls from the keyboard. FSUIPC4 only pinches the joystick inputs. You have to assign the

additional joystick axes, wherever they may be, to these ―spare‖ controls.

Now add to the FSUIPC4.INI file‘s JoystickCalibration section (add the section if necessary) a list of declarations

which define the additional controls you have assigned. You define these by number. The main flight controls are

defined by parameters like this:

 AileronB=<control number>

ElevatorB=<control number>

 RudderB=<control number>

Other parameters here can define LeftBrakeB, RightBrakeB, ThrottleB, and also C and D versions of all 6 controls,

so providing up to 4 copies of each one.

Note that you will need to calibrate all controls so that the ones controlling the same values are as close as possible in

range and response. Do this first in Windows Control Panel, then, after making the above adjustments and

assignments, in FSUIPC4. Calibrate dead zones at the ends (and in the centre for aileron, elevator and rudder) to

―cover up‖ any discrepancies—in other words, calibrate for the worst of each.

Method 2:

An easier method is now available, provided you use the FSUIPC Axis Assignments facility to assign your controls,

deleting them from FS assignments.

FSUIPC‘s axis assignments allows any of your joystick axes to be assigned to any of FS‘s or FSUIPC‘s axis

controls, and there‘s no restrictions on how many you can assign to any of them. So that‘s the first problem solved –

you can assign two sets of yokes, rudders, whatever, to the same controls.

Both FSUIPC and FS take notice of the last movement in an axis. They don‘t ―poll‖ them to get regular inputs, but

only see changes coming from them. So both will see the last change from multiple axes. However, that might be

from an unwanted jitter or small accidental movement. So, provided you assign your axes for Direct FSUIPC

Calibration (as opposed to an FS control), FSUIPC now arbitrates, selecting the axis with the highest deflection

(defined here as a difference from zero).

Note, however, that it still only sees axes when they change, so even if one axis is held at an large deflection, once

another axis for the same control moves to a similar or higher position, that takes control then even if it moves lower

than the held on—the latter is effectively ―out of it‖ until it is moved.

The hints about calibration in Method 1 still apply.

 40

HELICOPTER PITCH and BANK TRIM facilities

A facility to operate pitch and bank trims on helicopters is provided. This uses the normal FS elevator and aileron

trim controls (and axes) to modify the end value on the ―Y‖ (elevator) and ―X‖ (aileron) axis of the cyclic. To use

this you need to ensure that the axes are calibrated through FSUIPC4 (as the elevator and aileron axes respectively),

and add

ApplyHeloTrim=Both

to the relevant [JoystickCalibration …] section(s) in FSUIPC4.INI. Note that, as a precaution, the trim value will

never be added to the relevant axis if the normal trim value is non-zero.

This new ―helo trim‖ values are maintained in IPC offsets as follows:

0BBE 2 bytes 16-bit Helo Pitch Trim value, range –16383 to +16383

0C06 2 bytes 16-bit Helo Bank Trim value, range –16383 to +16383

Both of these can be written to for external program control.

Note that if you only require a pitch trim you can set

ApplyHeloTrim=Yes

Instead of ‗both‘. The aileron/bank axis and trim values will then be left alone.

Message Filters

Messages sent to FSUIPC for display on the FS screen can be filtered and forcibly routed according to their first few

characters. This is done by adding a new section to the FSUIPC.INI file, as follows:

 [MessageFilters]

 Suppress=...

 SingleLine=...

 MultiLine= ...

The ―...‖ part is replaced by a list of up to 8 strings (in "quotes"), each of less than 16 characters. Messages sent to

FSUIPC are compared with these. If they start with the same characters (case ignored) then the action taken is as

follows:

 Suppress: the message is discarded

 SingleLine: the message is treated as a single line message even if it isn't

 Multiline: the message is treated as a multiline message even if it isn't.

For example:

SingleLine="FDC","PM MCP"

will route messages beginning "FDC" or "PM MCP" to the single line window, unless such messages are suppressed

by FSUIPC option.

Multiple INI files

In general, because of the flexible aircraft-specific keypress, axis and button assignment and calibration facilities

built into FSUIPC4, it is not really often necessary to consider having different INI files for different needs. But it is

possible. Here‘s how:

 41

For each additional set of INI parameters, you have to make a copy of the FSX.EXE file, in the main FSX folder,

with another name. There are two variations on how the changed name is used.

If you give a name beginning with ―FSX‖, such as FSX_for_Choppers.EXE then FSUIPC4 uses the appended part

for its files, thus:

FSUIPC4_for_Choppers.INI (also for .LOG, and even .KEY—so remember to duplicate your KEY file and

rename it accordingly or you will find yourself unregistered).

If you don't keep ―FSX‖ as the first characters, then the whole of the new name is appended after a ‗.‘—for example

PetesFSX.EXE would give:

FSUIPC4.PetesFSX.INI (and again the same for .LOG and .KEY).

IMPORTANT: Each renamed FSX has its renamed CFG file too—if you don't copy your FSX.CFG file and rename

it to match your renamed FSX.EXE file, when FSX reloads it will generate a new default one with its new name.

 42

APPENDIX 1: Do more with your joystick!
This section is from a contribution graciously made by an intrepid FSUIPC user. I hope you will find it useful. Apart

from formatting to fit this current document I’ve left it exactly as originally submitted.

During the past flightsimming years, the PC flight simulators have become more and more professional and more

complex. Very sophisticated airplanes can be downloaded for free or purchased for a reasonable price. Many of

them includes all bells and whistles in a way that ―flightsimming‖ is no ―game‖ any more, and for many among us it

becomes more and more a ―real flight simulator‖ as used in the real flying world. Some have built very real looking

cockpits with instrument panels with every switch and control in its right place; others like myself are still using their

joystick and keyboard.

As I have a small computer desk, it is not so handy to use the keyboard and my joystick together especially for

flightsimming. A cockpit is overloaded with devices to be set, numerous switches have to be used, many settings

must be executed via keyboard entries and with a joystick with a scrubby eight buttons for all the remaining

commands, it seems to be impossible to do this in any user-friendly way

In FSX and previous simulators, Microsoft has assigned some, but not all, commands to the joystick buttons by

default and these can modified by the menu tree ―Options—Controls—Assignments‖. By selecting a command from

a list and defining a button of your joystick, the activation of this button will execute the selected command. There is

also an option that repeats the command as long as the button is pushed.

I have an 8-button joystick but the simple default joystick programming of the eight buttons was not sufficient

anymore. I need more commands, more sophistication on my joystick. So I searched for a solution: because my

joystick was absolutely necessary the only option is then to eliminate keyboard entries as much as possible.

Lucky there are still some smart guys on this world, guys like Pete Dowson. Pete is well known for his excellent

FSUIPC.DLL add-on module for MS flight simulators. This module makes it possible to correct some flaws in FS

and to enhance FS, and must be considered as ‗a must have‘ for the whole FS community. But FSUIPC includes also

many features that the modal user can use to his advantage. One of these features for licensed FSUIPC users is

―joystick and keyboard button programming‖.

Originally, Pete has provided this feature for owners of Goflight and Epic devices but this can also be used for your

joystick too! I have written this guideline on the request of Pete because we realize that only a few FS users use this

powerful tool as intended. I will try to explain the marvellous things you can do with this superb programming tool.

A few weeks ago I didn't realized it myself, but now, oh boy!

I will explain some programming tricks I‘m using in the button programming of my own Sidewinder Force Feedback

Joystick 2 from Microsoft.

The following documentation is needed before you can start the programming:

First: A fully user-licensed FSUIPC4, version 4 installed in your copy of FSX.

Second: the ―FSUIPC4 for Advanced Users‖ manual [the one now before you]. Please, read very carefully the

chapters concerning keyboard and joystick button programming, especially the section about compound buttons.

Third: the ―List of FSX Controls‖ document which will have also been installed for you in your FSX modules folder.

To be sure that all commands will be executed the way you have programmed them, almost all the default

programming of the buttons in Flight Simulator must be removed. I have removed them all, except the Hat button

programming.

I use the two buttons on the left of the joystick pedestal to set conditions for the selection of commands assigned to

the six other buttons. I also include the tricks you can use if you would use three buttons to set conditions.

Let us start with the first case. The two buttons used to define a condition, are labeled ―7‖ and ―8‖ on the joystick.

The lowest button label on the joystick is being ―1‖. For programming however the button numbering starts with

button ―0‖ for the button with label 1, ―1‖ for button 2 etc. And so, again in our case, the conditions are programmed

by button ―6‖ and ―7‖. Four possibilities are created by the button status, pushed or released, of a combination of two

buttons:

1. button 6 and 7 are both up,

2. button 6 is down and button 7 is up,

3. button 7 is down and button 6 is up

4. button 6 and button 7 are both down.

 43

The status of these two buttons together with an action of one of the other six buttons can be used to program a flight

simulator command. In fact we can now assign up to 4 commands per button or 24 commands to the six remaining

buttons (even 48, because we can program a function if one of the ―action‖ buttons is going down and another when

the same button goes up again)

The following can be done with a combination of three buttons:

1. button 5, 6 and 7 are all three up

2. button 5 is down, 6 and 7 up

3. button 6 is down, 5 and 7 are up

4. button 7 is down, 5 and 6 are up

5. button 5 and 6 are down, button 7 is up

6. button 5 and 7 are down, 6 is up

7. button 6 and 7 are down, button 5 is up

8. button 5, 6 and 7 are all three down

There are now 8 possibilities in the combination and 5 remaining buttons which gives 40 and up to 80 commands

that could be assigned to these 5 buttons.

As specified in the section on Button programming, earlier, two kinds of commands can be generated: use the button

combination to simulate a hit of a key combination on the keyboard, or use the joystick button combination to

generate an ―internal‖ FS command. A list of all the possibilities for these commands can be found in the ―List of

FSX Controls‖ document.

Let us take a few rules out of a button programming as examples:

 3=CP(-0,6)(-0,7)0,3,C65615,0

 ...

 ...

 9=CP(+0,6)(-0,7)0,3,C65769,0

In these both cases the active button (the button that is generating the command) is button 3 (with label 4 on the

joystick). In the first case the command ―65615‖ is generated when button 6 and 7 are up and button 3 is going

down. C65615 will generate an ―Elevator Trim Up‖, the same command as the default joystick button programming.

The ―CP‖ syntax defines that the command will be only executed once, even if the button 3 is holding down.

However, by holding down the ―6‖ button (―7‖ on the MS joystick) and activating button 3, FSUIPC will generate a

―65769, Propeller Pitch Increment‖, command. This command is not a default joystick button command, but a

command that, if it was not programmed that way, had to be entered by a button combination on the keyboard.

By defining the button combination with a ―CR‖, the command will be repeated until the action button is released

again, which is in our application more advantageous. And in fact, the repeat function is used on both commands:

 2=CR(-0,6)(-0,7)0,2,C65607,0

 3=CR(-0,6)(-0,7)0,3,C65615,0

 ...

 ...

 8=CR(+0,6)(-0,7)0,2,C65771,0

 9=CR(+0,6)(-0,7)0,3,C65769,0

The buttons ―2‖ and ―3‖ are used here to trim up/down (rule 2 and 3) with button 6 and 7 up. The same buttons, but

now with button 6 activated while button 7 is up, controls the propeller pitch.

I assigned another two commands to the same ―2‖ and ―3‖ buttons; also I programmed the combination with the 7

button for ―Mixture Incr‖ and ―Mixture Decr‖ in rule 19 and 20:

 19=CR(-0,6)(+0,7)0,2,C65775,0

 20=CR(-0,6)(+0,7)0,3,C65777,0

I must emphasise here that FSUIPC uses the status (up or down) of the buttons in the compound combinations (+/-

j,b)(+/-j,b) for a condition, but the changes of the button status, in fact ―the pushing‖ or ―the releasing‖ of a joystick

button for the activation of the command, which is valid for one whole scan, meaning the check of all following

button programming rules. This is important to remember.

On the MS joysticks, button 2 and 3 are very well placed for using them as increment and decrement functions and a

lot of commands could be attached to them. However, we have used already 3 of the four condition statuses. So if we

 44

only use the combination of two buttons and like to attach much more commands to these buttons we have to find

another way.

First of all, with all preceding versions up to and including 3.14, FSUIPC allowed compound combinations of the

status of up to two buttons, and not more than two buttons, to create a condition. In the newer versions the status of

16 buttons can used to create a condition—but the explained tricks will still be valid.

In fact, the button programming does not work directly with the buttons because FSUIPC stores the status of a button

in a ―flag‖, an internal storage space, during a process cycle or scan of all programmed button rules. The

programmed conditions use these flags to define the result status of the programmed condition.

FSUIPC saves now the status for up to 32 buttons of up to 16 joysticks, which means 512 flags for 512 buttons!

From these 512 flags, only 8 are used for the 8 buttons of my joystick and the rest of these flags likes to be wasted

space. Not entirely! Because Peter has provided some commands to set, toggle or reset the flags, even if they are not

―connected‖ to a button. So an instruction can be used to set or reset a flag and to use the flag afterwards in a

condition. And because there is no connection to an existing button, the status of the flag is entirely dependent of the

programmed instructions that are given for that particular flag.

What we are going to do now is to make ONE flag reflecting the condition of the TWO buttons, so that this flag can

be used together with the status of another button, to create another condition. To do this, I use the following tricks:

; Flag 10 follows keys (-6 AND -7)

;

0=CU(-0,7)0,6,C1003,10

1=CU(-0,6)0,7,C1003,10

When FS is started and the module FSUIPC.DLL is activated, all flags are reset. To be sure about the setting of flag

10 we have to ―play a bit‖ with buttons 6 and 7. Playing a bit with these buttons at the beginning of our flight does

not generate commands, because both buttons are ―dead‖ buttons and they will not sent commands to FS (this is the

same as the shift keys on your computer keyboard which are doing nothing on their own but only functioning

together with other keys). The above rules are assuring that flag 10 will be set when both buttons are up or are going

up:

Rule 0: when button 7 is up, and button 6 goes up, set flag 10

Rule 1: when button 6 is up, and button 7 goes up, set flag 10

The following rules are setting flags when one of the both buttons is going down. In these cases however we have to

reset flag 10:

; Flag 11 follows keys (+6 AND -7)

;

2=CP(-0,7)0,6,C1004,10

3=CP(-0,7)0,6,C1003,11

4=CU(F+0,11)0,6,C1004,11

;

; Flag 12 follows key (-6 AND +7)

;

5=CP(-0,6)0,7,C1004,10

6=CP(-0,6)0,7,C1003,12

7=CU(F+0,12)0,7,C1004,12

The explanation of these programming rules is:

Rule 2: if button 6 goes down and button 7 is still up, reset flag 10.

Rule 3: if button 6 goes down and button 7 is still up, set flag 11 (remember that the action of the

active button can be seen by all the following rules in the same scan).

Rule 4: when flag 11 is set and button 6 goes up, reset flag 11.

Flag 11 follows now the status of button 6 (up or down) while button 7 is up.

Rule 5: if button 7 goes down and button 6 is still up, reset flag 10.

Rule 6: if button 7 goes down and button 6 is still up, set flag 12.

Rule 7: when flag 12 is set and button 7 goes up, reset flag 12.

 45

In this case flag 12 follows the status of button 7 (up or down) while button 6 is up.

Now follows a more tricky part because we want to make a ―follower‖ for button 6 and 7 down, (if we wouldn‘t use

a combination with both buttons down, then, in any case, we have to include rule 8 and 11 to be sure of a resetting of

flags 11 and 12 when the conditions in the above rules aren‘t valid any more):

; Flag 13 follows key (+6 AND +7)

;

8=CP(+0,6)(F+0,11)0,7,C1004,11

9=CP(+0,6)0,7,C1003,13

10=CU(F+0,13)0,7,C1004,13

;

11=CP(+0,7)(F+0,12)0,6,C1004,12

12=CP(+0,7)0,6,C1003,13

13=CU(F+0,13)0,6,C1004,13

Even if we do our very best, it‘s nearly impossible to push two buttons at the same time, so we have to disable the

resulting flag setting of these rules in rule 8 and 11 because the program loop will detect that the conditions as

specified in rule 3 or 6 will be satisfied before the second button is activated:

Rule 8: If button 6 is down and flag 11 is set (because we were faster with button 6 as with

button 7) and button 7 goes down, reset flag 11.

Rule 9: If button 6 is down and button 7 is down, set flag 13.

Rule 10: If flag 13 is set and button 7 is released, reset flag 13. This programming rule acts if

button 7 is released before button 6. In that case you would think that rule 3 is back in the

game, but that's not true: FSUIPC doesn't react on the status of the ―active‖ key but on the

change of his status: ―button down‖ is actually meaning ―button goes down‖, ―button up‖

is actually ―button goes up‖. And because there is no change in the status of button 6, rule

3 is not activated.

Rule 11: If button 7 is down and flag 12 is set (because we were faster with button 7 as with button

6) and button 6 goes down, reset flag 12.

Rule 12: If button 7 is down and button 6 goes down, set flag 13.

Rule 13: If flag 13 is set and button 6 is released, reset flag 13. This programming rule acts if

button 6 is released before button 7. Here also the same remark as for rule 10, but now

regarding rule 6.

Now these flags can be used to assign real Microsoft Flight Simulator functions to the remaining buttons:

; IF -6 AND -7 (Flag 10)

;

14=CR(F+0,10)0,0,C65588,0 ;repeat break

15=CP(F+0,10)0,1,C65570,0 ;toggle gear

16=CR(F+0,10)0,2,C65607,0 ;repeat trim pitch up

17=CR(F+0,10)0,3,C65615,0 ;repeat trim pitch down

18=CP(F+0,10)0,4,C65758,0 ;increment flaps

19=CP(F+0,10)0,5,C65759,0 ;decrement flaps

;

; IF +6 AND -7 (Flag 11)

;

20=CP(F+0,11)0,0,K192,1 ;voice key for CS727

21=CP(F+0,11)0,1,C65751,0 ;toggle landing lights

22=CR(F+0,11)0,2,C65771,0 ;repeat decr. mixture

23=CR(F+0,11)0,3,C65769,0 ;repeat incr. mixture

24=CP(F+0,11)(F+0,20)0,4,C66390,0 ;AND +F20 toggle wing fold (Drag chute on CS F104)

25=CP(F+0,11)(F-0,20)0,4,C66391,0 ;toggle tail hook (Drag chute on CS Mig21)

26=CP(F+0,11)0,5,C65589,0 ;toggle air break

A little more about rule 24 and 25: I am a fan of Captain Sim airplanes, but the CS team uses a different command

for the drag chute on the Mig21 as for the drag chute on the Starfighter. I decided to use a flag (which I program later

on) to generate a different command for the same button, depending on the status of that flag. Here is another trick

that I am also using for the Yak 3 of Captain Sim airplanes: the default animation of the rear-view mirror uses two

 46

different commands for the activation and deactivation of the mirror. This is a rather weird because this is a toggle

command. The next trick allows me toggle the mirror with one button:

36=CP(F+0,13)(F-0,30)0,0,C66294,0 ;Incr Concorde Visor (activate rear-view mirror)

37=CP(F+0,13)(F+0,30)0,0,C66295,0 ;Decr Concorde Visor (deactivate rear-view mirror)

38=CU(F+0,13)0,0,C1005,30 ;Toggle flag 30

The combination of these three rows is used to switch the button command from incr to decr and visa versa, each

time the 0 button is activated while button 6 and 7 are both down.

The next button programming rules in the INI file are:

; IF (-6 AND +7) = F12

;

27=CP(F+0,12)0,1,C65858,0 ;toggle pitot-heat

28=CR(F+0,12)0,2,C65777,0 ;repeat mixture decrement

29=CR(F+0,12)0,3,C65775,0 ;repeat mixture increment

30=CP(F+0,12)0,4,K83,8 ;keyboard ―S‖ (next view)

31=CP(F+0,12)0,5,K83,1 ;keyboard ―SHIFT-S‖ (previous view)

;

; IF(+7 AND +8) = F13

;

32=CP(F+0,13)0,0,C66224,0 ;autostart engines

33=CP(F+0,13)0,1,C66293,0 ;toggle avionics on/off

34=CR(F+0,13)0,2,C65880,0 ;increment heading bug

35=CR(F+0,13)0,3,C65879,0 ;decrement heading bug

By using the combination of three buttons is the following can be accomplished:

; Flag 10 follows keys (-5 AND -6 AND -7)

;

0=CU(-0,6)(-0,7)0,5,C1003,10

1=CU(-0,5)(-0,7)0,6,C1003,10

2=CU(-0,5)(-0,6)0,7,C1003,10

;

; Flag 11 follows keys (+5 AND -6 AND -7)

;

3=CP(-0,6)(-0,7)0,5,C1004,10

4=CP(-0,6)(-0,7)0,5,C1003,11

5=CU(F+0,11)0,5,C1004,11

;

; Flag 12 follows key (-5 AND +6 AND -7)

;

6=CP(-0,5)(-0,7)0,6,C1004,10

7=CP(-0,5)(-0,7)0,6,C1003,12

8=CU(F+0,12)0,6,C1004,12

;

; Flag 14 follows key (-5 AND -6 AND +7)

;

9=CP(-0,5)(-0,6)0,7,C1004,10

10=CP(-0,5)(-0,6)0,7,C1003,14

11=CU(F+0,14)0,7,C1004,14

;

; Flag 14 follows key (+5 AND +6 AND -7)

;

12=CP(+0,6)(F+0,12)0,5,C1004,12

13=CP(+0,6)(-0,7)0,5,C1003,13

14=CU(F+0,13)0,5,C1004,13

;

15=CP(+0,5)(F+0,11)0,6,C1004,11

16=CP(+0,5)(-0,7)0,6,C1003,13

 47

17=CU(F+0,13)0,6,C1004,14

;

; Flag 15 follows key (+5 AND -6 AND +7)

;

18=CP(+0,7)(F+0,13)0,5,C1004,13

19=CP(+0,7)(-0,6)0,5,C1003,15

20=CU(F+0,15)0,5,C1004,15

;

21=CP(+0,5)(F+0,13)0,7,C1004,11

22=CP(+0,5)(-0,6)0,7,C1003,15

23=CU(F+0,15)0,7,C1004,15

;

; Flag 16 follows key (-5 AND +6 AND +7)

;

18=CP(+0,6)(F+0,12)0,7,C1004,12

19=CP(+0,6)(-0,5)0,7,C1003,16

20=CU(F+0,16)0,7,C1004,16

;

21=CP(+0,7)(F+0,13)0,6,C1004,13

22=CP(+0,7)(-0,5)0,6,C1003,16

23=CU(F+0,16)0,6,C1004,16

 48

Appendix 2: About the Aircraft Specific option and “ShortAircraftNameOK”
Note: this is a contribution from a user, to whom thanks is expressed.

There are these three choices in FSUIPC settings:

ShortAircraftNameOK=No

ShortAircraftNameOK=Yes

ShortAircraftNameOK=Substring

Result: To get exactly the same settings for AXES, BUTTONS, KEYS and CALIBRATION for each plane
repaint or variant.

The Short Aircraft Name in FSUIPC refers to the name in the Aircraft.cfg file under “title”

For example: Aerosoft DHC Beaver. There might be 7 variants or repaints

aircraft.cfg \(flightsim.X)\title= Aerosoft Beaver DHC-2A 55-0682
aircraft.cfg \(flightsim.X)\title=DHC-2A C-GSKY Beaver
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A C-GSKY modern
aircraft.cfg \(flightsim.X)\title=Beaver DHC-2A DQ-GEE
aircraft.cfg \(flightsim.X)\title=DHC-2A DQ-GEE modern
aircraft.cfg \(flightsim.X)\title= Aerosoft DHC-2A N299EE
aircraft.cfg \(flightsim.X)\title=Beaver Aerosoft DHC-2A N299EE modern

Edit the FSUIPC.ini file:

Scenario 1: If “ShortAircraftNameOK=No”

Presuming that you have already assigned the axes, keys and buttons and calibrated the joystick for one
of the above variants or repaints: in order to get the same settings for the rest of the above
variants/repaints of the Aerosoft Beaver you would need to edit the FSUIPC.ini file and add 4 separate
entries for each title name (exactly as above) under [Axes], [Buttons], [Keys], [Joystick Calibration] to
ensure that all of the settings were exactly the same, ie 28 entries in all. Pretty tedious in fact— I had
over 40 variants/repaints of this plane so I would have need 160 entries in the FSUIPC.ini file.

[Axes. Aerosoft Beaver DHC-2A 55-068]
[Buttons. Aerosoft Beaver DHC-2A 55-068]
[Keys. Aerosoft Beaver DHC-2A 55-068]
[JoystickCalibration.Aerosoft Beaver DHC-2A 55-068]

[Axes. DHC-2A C-GSKY Beaver]
[Buttons. DHC-2A C-GSKY Beaver]
[Keys. DHC-2A C-GSKY Beaver]
[JoystickCalibration.DHC-2A C-GSKY Beaver]

[Axes. Aerosoft DHC-2A C-GSKY modern]
[Buttons. Aerosoft DHC-2A C-GSKY modern]
[Keys. Aerosoft DHC-2A C-GSKY modern]
[JoystickCalibration.Aerosoft DHC-2A C-GSKY modern]

[Axes. Beaver DHC-2A DQ-GEE]
[Buttons. Beaver DHC-2A DQ-GEE]
[Keys. Beaver DHC-2A DQ-GEE]
[JoystickCalibration.Beaver DHC-2A DQ-GEE]

[Axes. DHC-2A DQ-GEE modern]

 49

[Buttons. DHC-2A DQ-GEE modern]
[Keys. DHC-2A DQ-GEE modern]
[JoystickCalibration.DHC-2A DQ-GEE modern]

[Axes. Aerosoft DHC-2A N299EE]
[Buttons. Aerosoft DHC-2A N299EE]
[Keys. Aerosoft DHC-2A N299EE]
[JoystickCalibration. Aerosoft DHC-2A N299EE]]

[Axes. Beaver Aerosoft DHC-2A N299EE modern]
[Buttons. Beaver AerosoftDHC-2A N299EE modern]
[Keys. Beaver Aerosoft DHC-2A N299EE modern]
[JoystickCalibration.Beaver Aerosoft DHC-2A N299EE modern]

Scenario 2: If “ShortAircraftNameOK=YES”

12 entries would be required to make sure all settings were the same

[Axes. Aerosoft
[Buttons. Aerosoft
[Keys. Aerosoft
[JoystickCalibration.Aerosoft]

[Axes. DHC]
[Buttons. DHC]
[Keys.DHC]
[JoystickCalibration.DHC]

[Axes. Beaver]
[Buttons. Beaver]
[Keys.Beaver]
[JoystickCalibration.Beaver]

Explanation:

1. “Aerosoft” would pick all those entries in the title STARTING with “AEROSOFT”, but NOT
Aerosoft in any other part of the title.

2. “DHC” would pick all those entries in the title STARTING with “DHC” but not those with “DHC” in
any other part of the title

3. “Beaver” would pick all those entries in the title STARTING with “Beaver” but not those with
“Beaver” in any other part of the title

Scenario 3: If “ShortAircraftNameOK=Substring”

4 entries only, i.e. “DHC” in the FSUIPC.ini file would result in all variants having exactly the same settings
– “DHC” is common to all titles.

[Axes. DHC]
[Buttons. DHC]
[Keys. DHC]
[JoystickCalibration.DHC]

To summarise:

ShortAircraftNameOK=No One entry for each different title in the aircraft.cfg file

ShortAircraftNameOK=Yes Picks up the starting part of the title in the aircraft.cfg file

ShortAircraftNameOK=Substring Picks up any part of the title in the aircraft.cfg file

 50

Title in aircraft.cfg file ShortAircraftNameOK=

No Yes Substring

title=Airbus A321
title=Airbus A321 Paint2
title=Airbus A321 Paint4
title=Airbus A321 Paint5
title=Boeing 737-400
title=Boeing 737-400 Paint1
title=Boeing 737-400 Paint2
title=Boeing 737-400 Paint3
title=Boeing 737-400 Paint4
title=Boeing 747-400
title=Boeing 747-400 Paint1
title=Boeing 747-400 Paint2
title=Boeing 747-400 Paint3
title=Boeing 777-300
title=Boeing 777-300 Paint1
title=Boeing 777-300 Paint2
title=Boeing 777-300 Paint 3

Separate entry for
each title

“Airbus”: Would
apply to all entries
starting with Airbus.

“Boeing” would apply
to all entries starting
with Boeing.

“A321”: Any

variant with A321

in the title.

“Paint” Any

variant with PAINT

in the title.

“737”: Any variant

with 737 in the title.

Explanation: ShortAircraftNameOK=Substring Any text that is in any position in the “title” located in the
aircraft.cfg file that is inserted in the ini file as above will result in the same settings for those aircraft.
For instance choosing “737” ie [Axes.737] etc would result in all planes with 737 in the title having the
same settings. Likewise choosing “Boeing” would cover all variants/repaints with Boeing in the title

To summarise if you had 20 variants/models/repaints with all different titles you would need 20 entries
per section (80 in all) in the ini file. Using ShortAircraftNameOK=Substring you could cut this back to
just 1 entry per section (4 in total).

 51

APPENDIX 3: Handling VRInsight devices in FSUIPC4

Introduction

VRInsight devices have become quite popular, being pretty good value for money. You can get a lot of functionality

in a compact package. However, they are not recognised by Windows as "Human Interface Devices" (HIDs) and

certainly not as "joysticks", and are therefore not normally seen in FSUIPC for Button or Switch programming.

In fact they are serial "COM" port devices, using USB connections with an FTDI chip based interface with a

serial/USB port driver. Their interface to FS is managed by VRInsight's own driver "SerialFP2".

For many straightforward uses, SerialFP2 does a good job. However, it doesn't provide the flexibility for every

purpose and with more and more specialised aircraft and other add-ons for FS doing their "own thing", a way to

increase the functionality of the VRI devices was felt needed. This is especially the case where the devices have to

resort to sending many keypress combinations, which can get rather fraught when so many other programs are also

doing this.

The opportunity to make provisions in FSUIPC for the VRInsight range arose after the implementation of the serial

port handling Lua library, "com", because now FSUIPC already contained a multi-device multi-threaded mechanism

for easily reading from, and writing to, serial COM port devices.

Problems and Solutions

Compared to the GoFlight implementation in FSUIPC, which utilises a library module (GFDev.dll) provided by

GoFlight for this purpose, there are some complications. With GoFlight the devices can, to some extent, be shared

between the GoFlight driver assignments and FSUIPC assignments (though admittedly this can provide

complications with displays and indicators). The VRInsight situation is rather different. There is no easy way for a

user-level program like FS+FSUIPC to share the use of the same COM port with the VRInsight driver (SerialFP2). It

could probably be done using something like the Eterlogic VSPE program as a "splitter", but this is not a general

solution for users.

Therefore it first looked like it would have to be an either/or: you either use SerialFP2, or you use FSUIPC probably

with a Lua plug-in to program the displays. That would means the plug-in must do a lot of work, much of it probably

beyond the means of most users.

However, the Eterlogic VSPE ("Virtual Serial Port Emulator") does offer a good solution. It can provide any number

of virtual serial port "Pairs": that is two 'pretend' COM ports which are linked. For example, COM9 and COM10

might be a "Pair". Whatever a program writes to COM9 can be read by another program on COM10 and vice versa.

This is a facility I already promote the use of with my GPSout links via WideFS, for moving map applications.

The use of Virtual Serial Port pairs allows FSUIPC to sit between the VRInsight device and the VRInsight driver

(SerialFP2). Then FSUIPC can divert some or all buttons and switches to uses determined in the FSUIPC options,

and it can provide optional Lua plug-ins with opportunities to hook into both switch inputs from and display outputs

to the devices.

Okay. So, if you are still interested, let's move on to the instructions for achieving this:

Setting up the virtual serial ports

First, please download the Eterlogic VSPE program:

http://www.eterlogic.com/Products.VSPE.html

If you are using a 32-bit Windows you will be able to use the free key which is included. 64-bit users will need to

purchase one ($25 U.S.).

After installing it and registering it (you have to cut and paste the long key!), proceed as follows:

1. From the Device menu, select Create.

2. In the Device Type drop-down, select Pair, then press Next and Finish.

http://www.eterlogic.com/Products.VSPE.html

 52

3. Repeat steps 1 and 2 for the number of VRI devices you want to connect this way.

4. Note down the pairs made. For example:

COM5  COM6

COM7  COM8

5. In the File menu, select Save As, and save the configuration to some place with a file name you will know.

For example, in C:\ with a name like

ComPairs_56_78

to suit the configuration example I gave above.

6. Now close VSPE. By default the pairs will be destroyed. That‘s fine.

7. Find the short-cut to VSPE which the installer placed on your desktop. Right-click it, select Properties, then

at the end of the stuff in ―Target‖, and after a space add:

 -minimize –hide_splash C:\ComPairs_56_78.vspe

where you put your own path and configuration filename in place of ‗C:\ComPairs_56_78‘

8. Now you have a choice. You can have this program start when Windows starts—just drag the short-cut, or a

copy of it, into the Windows Startup folder. That‘s what I would do. The existence of all those extra COM

ports does no harm when you are not using them, and you will be annoyed if you forget to start the program

before you want to run FS.

Note that you must not start it by simply using a Run parameter in FSUIPC4 INI‘s [Programs] section.

This will be too late for FSUIPC to open one end of the link for SerialFP2 to connect.

Configuring FSUIPC4 to handle VRI devices

Now we must edit the FSUIPC4 INI file. Find it in the FS Modules folder—if you have Windows set to hide known

filetypes it will look like just ‗FSUIPC4‘ with a file type of ―Configuration Settings‖. Load it into a text editor

such as NotePad—do not use WordPad or a word processor!

Add a completely new section:

 [VRInsight]

 1=<device>, <driver>

 2=<device>, <driver>

Where those <device> and <driver> entries are serial port names. You need one line here for each VRI device. The

order doesn‘t matter. The <device> entry gives the real serial port name for the device, and the <driver> entry gives

a virtual serial port name.

You can assign any virtual pair to any device, but just one pair to one device. Then, for each device, you enter one of

the pair‘s port names as <driver> here. The other one of the pair will be used by SerialFP2—you shouldn‘t need to

worry about that if SerialFP2 is set to ‗Auto‘, as it will find it.

As an example, supposing I have one VRI device on COM3 and another on COM9. With my two pairs as set in the

example on the previous page I could have:

 1=COM3, COM6

 2=COM9, COM8

Then SerialFP2 would connect to the first via COM5 and the second via COM7. Here are the connections which

will be made:

SerialFP2   COM5   COM6   FSUIPC   COM3   VRI Device1

SerialFP2   COM7   COM8   FSUIPC   COM9   VRI Device2

Note that, if you didn‘t need SerialFP2 to drive your device, if it only had buttons and switches you were assigning in

FSUIPC, or you were driving it with a Lua plug-in instead of SerialFP2, then you need not have a ‗Pair‘ for it and

you would omit the second port in the [VRInsight] parameters. I don‘t think this is likely to apply very often.

 53

Running SerialFP2

Whilst you are editing the FSUIPC4 INI file, you should consider how you will be running SerialFP2. It must not be

run before FSUIPC has grabbed the device‘s real port, or it will get it and prevent FSUIPC‘s access. Running it

manually after starting FS is awkward for obvious reasons.

The best way is to run it from FSUIPC. For that you need it adding to the INI file‘s [Programs] section (add the

section too if you haven‘t got one). For example, for two devices I would have this:

 [Programs]

Run1=READY,CLOSE,d:\VRInsight\SerialFP2\SerialFP2.exe

Run2=READY,CLOSE,d:\VRInsight\SerialFP2\SerialFP2.exe

For two devices you need two copies of SerialFP2 running, and so on. By putting ‗READY‘ here I am stopping it

running before FSUIPC has got the port. CLOSE simply asks FSUIPC to close it when FS closes.

One final thing. Until you are sure you have things right, you might want to enable some special Logging in FSUIPC

which will show what is going on in the SerialFP2 -- FSUIPC4 -- VRI device chain. Add the following lines to the

[General] section of the INI file for a log of all of the inputs and outputs, from all parties:

 Debug=Please

LogExtras=4

If you already have a "LogExtras" line there, just change it. You can also set and change the number in FSUIPC's

Logging tab once the 'Debug=Please' line is there. [Note that the LogExtras number may be 'x4'—hexadecimal 4, the

same value, so don't worry about that].

Okay. Now you should be ready. Make sure your VRI devices are switched on, then run FS.

If all goes well your VRI devices should initialise and start working normally. The FSUIPC4 Log file will, soon after

the initialisation phase, show entries like this:

 VRI port 1 "COM5" opened

 VRI driver port 1 "COM2" also opened

For each pair listed in the [VRInsight] section of the FSUIPC4.INI file, and then, as each device is seen by the

SerialFP2 driver (though probably getting mingled, as they are all multi-threading):

 VRI COM2 ---> CMDRST [from VRI Driver]

 VRI COM5 <--- CMDRST [to Device]

 VRI COM2 ---> CMDCON [from VRI Driver]

 VRI COM5 <--- CMDCON [to Device

 VRI COM5 ---> CMDCON [from Device]

 VRI COM2 <--- CMDCON [to VRI Driver]

 VRI COM5 ---> APLMAST+ [from Device]

 VRI COM2 <--- APLMAST+ [to VRI Driver]

 VRI COM2 ---> CMDFUN [from VRI Driver]

 VRI COM5 <--- CMDFUN [to Device]

 VRI COM5 ---> CMDFMER [from Device]

 VRI FMER ("MCP Combi") detected on port COM5

 VRI COM2 <--- CMDFMER [to VRI Driver]

Note that FSUIPC here recognized ―FMER‖ as being the MCP Combi.

If the SerialFP2 driver does not find the device it may need helping. Try setting it on 'AUTO' and making it retry.

Once you have it working it sohuld be fine next time.

Programming buttons, switches and knobs

Once you've reached this stage you should find you can detect and program most of the VRInsight knobs and

switches within FSUIPC's Buttons and Switches Tab. They'll have joystick numbers 256 and over. Some dials will

look like 4 buttons—fast and slow in each direction. But some don't have the fast mode.

FSUIPC's Buttons tab only reacts to buttons when they switch from "off" to "on". For VRInsight devices this

generally means two presses on buttons—unlike normal joystick buttons, holding them down does nothing useful.

There's no indication available of this. You press and release for one indication, then do the same again for the next.

Each time you do this it changes the button state from "off" to "on" and vice versa, alternately. If you want a button

 54

to do something every time you press it you need to program both the press and the release. Similar considerations

usually apply to dials, which look "on" on one click and "off" on the next, and so on.

At present the radio buttons and knobs are not programmable in FSUIPC. They seem to operate quite well enough as

they are. They will be overridable in Lua plug-ins, for those among you who wish to get into more advanced

manipulation of the devices, but they aren't suitable for general re-allocation.

Once a button, knob or switch is programmed in FSUIPC it is hidden from SerialFP2 and, in fact, the log.

What else? What about the displays?

Good questions.

Everything that SerialFP2 can do with a device can also be done with a Lua plug-in using the facilities offered by the

new "com" library and, with the aid of some extra parameters which go into the FSUIPC4.INI file, this can work

with SerialFP2 taking its part too if you'd rather not have to re-program everything yourself.

The Lua package provided with FSUIPC contains full details of both the Lua programming side and how the

FSUIPC INI file can be edited to make this all run seamlessly and automatically. Two relatively simple examples are

included and explained:

 one to allow the MCP Combi Speed display and adjustment to work correctly in Mach mode as well as IAS

mode, and

 one to swap the use of Inches for the altimeter BARO setting on the M-Panel for millibars (or hectoPascals

if you prefer).

If you own the MCP-Combi or M-Panel devices you might want to try one of those now. Instructions are included in

the Lua ZIP package.

Published by Peter L. Dowson March 2010

Support forum: http://forums.simflight.com/viewforum.php?f=54

http://forums.simflight.com/viewforum.php?f=54

